MongoDB系列之WiredTiger引擎

概述

关系型数据库MySQL有InnoDB存储引擎,存储引擎很大程度上决定着数据库的性能。

在MongoDB早期版本中,默认使用MMapV1存储引擎,其索引就是一个B-树(也称B树)。

从MongoDB 3.0开始引入WiredTiger(以下简称WT)存储引擎,在性能及稳定性上都有明显的提升。从MongoDB 3.2开始,WT作为默认的引擎,在索引和集合的检索上借鉴B+树。

WT是一个优秀的单机数据库存储引擎,拥有诸多特性,支持BTree、LSM Tree索引,支持行存储和列存储,实现ACID级别事务、支持大到4G的记录。

现代计算机近20年来CPU的计算能力和内存容量飞速发展,但磁盘的访问速度并没有得到相应的提高,WT就是在这样的一个情况下研发出来,充分利用CPU并行计算的内存模型的无锁并行框架,使得WT引擎在多核CPU上的表现优于其他存储引擎。针对磁盘存储特性,WT实现一套基于BLOCK/Extent的磁盘友好访问算法,使得WT在数据压缩和磁盘I/O访问上优势明显。实现基于snapshot技术的ACID事务,snapshot技术大大简化WT的事务模型,摒弃传统的事务锁隔离又同时能保证事务的ACID。WT根据现代内存容量特性实现一种基于Hazard Pointer的LRU cache模型,充分利用内存容量的同时又能拥有很高的事务读写并发。

WiredTiger存储引擎在数据检索性能上做了许多优化,基于内存的二级的缓存提供高速读取数据能力,在写方面则是根据磁盘I/O的特点做缓冲式写入,这是基于空间、时间因素权衡的一种择优设计。

MongoDB在写入更新记录时使用基于version的乐观锁模式,当写冲突产生(尝试更新失败)时,WiredTiger内部会产生WT_ROLLBACK结果,MongoDB检测到该状态之后会抛出WriteConflictException,最终由写入的执行线程捕获该异常并重试。

WiredTiger对事务的支持同时包含:未提交读、提交读、快照一致性读。MongoDB事务采用快照一致性读。

原理

读缓存

理想情况下,MongoDB可提供近似内存式的读写性能。WiredTiger引擎实现数据的二级缓存,第一层是操作系统层级的页面缓存,第二层则是引擎提供的内部缓存:
在这里插入图片描述
读取数据时的流程:

  • 数据库发起Buffer I/O读操作,由操作系统将磁盘数据页加载到文件系统的页缓存区
  • 引擎层读取页缓存区的数据,进行解压后存放到内部缓存区
  • 在内存中完成匹配查询,将结果返回给应用。

如果数据已经被存储在内部缓存中,MongoDB则可以发挥最佳的读性能。稍差的情况是内部缓存中找不到,但数据仍然被存储在操作系统的页缓存中,此时需要花费一些数据解压缩的开销。直接从磁盘加载数据时,性能是最差的。因此MongoDB为了尽可能保证业务查询的热点数据能快速被访问,其内部缓存的默认大小达到内存的一半,该值由wiredTigerCacheSize参数指定,其默认计算公式: w i r e d T i g e r C a c h e S i z e = M a t h . m a x ( ( R A M − 1 G B ) , 256 M B ) wiredTigerCacheSize=Math.max((RAM-1GB),256MB) wiredTigerCacheSize=Math.max((RAM1GB),256MB)

写缓冲

当数据发生写入时,MongoDB并不会立即持久化到磁盘上,而是先在内存中记录这些变更,随后通过CheckPoint机制将变化的数据写入磁盘。即,非实时持久化。

采用延迟持久化方案,则避不开可靠性问题。

MongoDB单机下保证数据可靠性的机制包括以下两个部分:

  1. CheckPoint机制:快照(snapshot)描述某一时刻(point-in-time)数据在内存中的一致性视图,而这种数据的一致性是WiredTiger通过MVCC(多版本并发控制)实现的。当建立CheckPoint时,WiredTiger会在内存中建立所有数据的一致性快照,并将该快照覆盖的所有数据变化一并进行持久化(fsync)。成功之后,内存中数据的修改才得以真正保存。MongoDB默认每60s建立一次CheckPoint,在检查点写入过程中,上一个检查点仍然是可用的。这样可以保证一旦出错,仍能恢复到上一个检查点。
  2. Journal日志:一种预写式日志(write ahead log)机制,主要用来弥补CheckPoint机制的不足。如果开启Journal日志,那么WiredTiger会将每个写操作的redo日志写入Journal缓冲区,该缓冲区会频繁地将日志持久化到磁盘上。默认情况下,Journal缓冲区每100ms执行一次持久化。此外,Journal日志达到100MB,或是应用程序指定journal:true,写操作都会触发日志的持久化。一旦MongoDB发生宕机,重启程序时会先恢复到上一个检查点,然后根据Journal日志恢复增量的变化。由于Journal日志持久化的间隔非常短,数据能得到更高的保障,如果按照当前版本的默认配置,则其在断电情况下最多会丢失100ms的写入数据。

结合CheckPoint和Journal日志,数据写入的内部流程图:
在这里插入图片描述
步骤:

  • 应用向MongoDB写入数据(插入、修改或删除)
  • 数据库从内部缓存中获取当前记录所在的页块,如果不存在则会从磁盘中加载(Buffer I/O)
  • WiredTiger开始执行写事务,修改的数据写入页块的一个更新记录表,此时原来的记录仍然保持不变
  • 如果开启Journal日志,在写数据同时会写入一条Journal日志(Redo Log)。该日志在最长不超过100ms之后写入磁盘
  • 数据库每隔60s执行一次CheckPoint操作,此时内存中的修改会真正刷入磁盘。

Journal日志采用的是顺序I/O写操作,频繁地写入对磁盘的影响并不是很大。在MongoDB 3.4及以下版本中,当Journal日志达到2GB时同样会触发CheckPoint行为。如果应用存在大量随机写入,则CheckPoint可能会造成磁盘I/O的抖动。在磁盘性能不足的情况下,问题会更加显著,此时适当缩短CheckPoint周期可以让写入平滑一些。

缓存页管理

WiredTiger仍然使用Page(页)作为数据存取的单元。其中,内存和磁盘中的页结构是不同的,Block Manager被用于处理这些差异。

页块在内存中以类B+树的结构进行组织,中间节点用于存放key,而叶子节点则存放key和value:
在这里插入图片描述
与传统B+树结构稍微不同的是,叶子节点(Leaf Page)通过父级指针(Parent Pointer)来实现范围遍历操作(避免并发写产生DeadLock)。当读取数据时,会先通过B+树索引找到对应的叶节点页面,而在页内则使用二分查找来查找记录。

当叶节点产生数据写入时,这些更新记录会被写入节点的一块独立区域,此时该节点被标记为脏页:
在这里插入图片描述
Inserts和Updates是单独的跳跃表(skiplist)结构,分别存放插入和修改操作,删除操作也被认为是一种修改(状态变更为删除)。如果存在修改,则读取时还会从跳跃表中做合并查找。

在CheckPoint时,引擎会通过Block Manager发起Reconciliation过程。此时,CheckPoint线程会遍历内存中的全部页并找到所有的脏页进行持久化,为了不阻塞读,使用Copy-On-Write方式。

对于脏页的处理并不是就地更新,而是为需要变更的页块生成新的节点(包括其父级节点),每次CheckPoint都会产生一个新的根节点(Root Page)。当持久化工作完成后,由这个新的根节点接管操作,淘汰不用的节点。

CheckPoint时,WiredTiger需要将BTree修改过的PAGE都进行持久化存储,每个BTree对应磁盘上一个物理文件,BTree的每个PAGE以文件里的extent形式(由文件offset + size标识)存储,一个CheckPoint包含如下元数据:

  • root page地址:地址由文件offset,size及内容的checksum组成
  • alloc extent list地址:存储从上次checkpoint起新分配的extent列表
  • discard extent list地址:存储从上次checkpoint起丢弃的extent列表
  • available extent list地址:存储可分配的extent列表,只有最新的CheckPoint包含该列表
  • file size:如需恢复到该CheckPoint状态,将文件truncate到file size即可

在Reconciliation过程中,BlockManager需要将内存中的页块转换为磁盘上的页,内存页要比磁盘页大一些:

  1. memory_page_max:内部缓存页大小的最大值,默认是5MB
  2. internal_page_max:磁盘中间页大小的最大值,默认是4KB
  3. leaf_page_max:磁盘叶节点页大小的最大值,默认是32KB
  4. allocation_size:磁盘文件的存储单元,默认是4KB,internal_page_max、leaf_page_max必须是它的整数倍

其中,memory_page_max的取值会影响写入延迟。这个值如果太小,则会导致频繁地分裂和淘汰(阻塞写入),如果太大则会导致每次产生阻塞的时间变长。internal_page_max存储的是B+树的索引,因此它会影响树的深度。在需要大量扫描磁盘记录的场景中leaf_page_max需要加大,可减少I/O次数,而在特别关注读写时延的场景中则需要适当减小。allocation_size则需要与操作系统的页缓存大小对齐,以达到最好的效率。

触发Reconciliation的条件:

  • CheckPoint
  • 缓存中的页超过最大值(存在大量的修改),产生分裂,此时会触发evict命令并持久化
  • 缓存中的脏数据比例达到一定阈值,触发缓存淘汰(evict)。

缓存淘汰策略
WiredTiger基于LRU算法来实现缓存淘汰,常态下会由后台的evict线程来负责淘汰页面。如果内存非常紧张,则用户线程也会加入缓存淘汰的工作中,此时表现出读写请求有一定阻塞。WiredTiger存储引擎eviction策略的4个可配置参数:

参数默认值解释
eviction_target80当cache used超过eviction_target时,后台evict线程开始淘汰Clean Page
eviction_trigger95当cache used超过eviction_trigger时,用户线程也开始淘汰Clean Page
eviction_dirty_target5当cache dirty超过eviction_dirty_target时,后台evict线程开始淘汰Dirty Page
eviction_dirty_trigger20当cache dirty超过eviction_dirty_trigger时,用户线程也开始淘汰Dirty Page

数据

里一个典型的WiredTiger数据库存储布局大致如下:

$tree
.
├── journal
│   ├── WiredTigerLog.0000000003
│   └── WiredTigerPreplog.0000000001
├── WiredTiger
├── WiredTiger.basecfg
├── WiredTiger.lock
├── WiredTiger.turtle
├── admin
│   ├── table1.wt
│   └── table2.wt
├── local
│   ├── table1.wt
│   └── table2.wt
└── WiredTiger.wt

文件解释:

  • WiredTiger.basecfg:存储基本配置信息
  • WiredTiger.lock:用于防止多个进程连接同一个WiredTiger数据库
  • table*.wt:存储各个tale(数据库中的表)的数据
  • WiredTiger.wt:特殊Table,用于存储所有其他Table的元数据信息
  • WiredTiger.turtle:存储WiredTiger.wt的元数据信息
  • journal:存储Write ahead log

压缩

默认情况下,WiredTiger对集合使用块压缩,对索引使用前缀压缩。当页面被写入磁盘时执行压缩,而从磁盘中读入缓存时对页面进行解压。持久化的Journal日志也会采用Snappy压缩算法(块压缩的一种)

内部缓存和磁盘中的数据有着不同的格式:

  1. 磁盘中的数据和文件系统的缓存是一致的,这些都是经过压缩的。文件系统缓存是操作系统层的机制,这是为了减少磁盘I/O而做出的优化
  2. 集合数据在内部缓存中是未经过压缩的(方便直接读写),而在磁盘和页缓存中则保持压缩的格式
  3. 索引在磁盘和页面缓存中均保持前缀压缩的形态,其在内部缓存中是另外一种结构,但同样利用前缀压缩算法

参数

  • storage.journal.commitIntervalMs:Journal日志的刷新周期。3.4及以下版本默认值50ms,3.6版本之后调整到100ms
  • storage.syncPeriodSecs:CheckPoint刷新周期,默认60s。
  • storage.wiredTiger.collectionConfig.blockCompressor:用于指定集合数据的压缩算法,选项如下:
    • None:不启用压缩
    • Snappy:默认,谷歌开源的强大而稳定的压缩算法,最高可达30%以下的压缩比,性价比较好
    • Zlib:相比Snappy来说压缩率更好,但需要消耗更多的CPU
    • Zstd:Facebook提供的新型高速压缩算法,能以较低的CPU消耗实现更高的压缩比。MongoDB 4.2版本开始支持
  • storage.wiredTiger.indexConfig.prefixCompression:用于指定是否启用索引前缀压缩(key prefix compression),默认true。前缀压缩对于CPU的消耗很小,平均可达到近50%的压缩率。

参考

  • MongoDB进阶与实战:微服务整合、性能优化、架构管理
  • https://mongoing.com/archives/5367

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/679011.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用C++从零开始,自己写一个MiniWeb

第一步:新建项目 1、打开VS点击创建新项目 2、选择空项目并点下一步(切记不能选错项目类型) 3、填写项目名称和路径,点击创建即可 新建好后项目是这样的比较干净 4、右击源文件,点击添加,新建http.cpp文件…

最简单的基于 FFmpeg 的视频编码器(YUV 编码为 H.264)

最简单的基于 FFmpeg 的视频编码器(YUV 编码为 H.264) 最简单的基于 FFmpeg 的视频编码器(YUV 编码为 H.264)正文结果工程文件下载 最简单的基于 FFmpeg 的视频编码器(YUV 编码为 H.264) 参考雷霄骅博士的…

[leetcode经典算法题]删除有序数组中的重复项(双指针)

删除有序数组中的重复项 给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素…

Nginx+React在Docker中实现项目部署

一、引言 Nginx 是一个高性能的 HTTP 和反向代理服务器,也能够处理 IMAP/POP3/SMTP 服务,由 Igor Sysoev 开发并在 2004 年首次公开发布。它以处理静态内容、提供反向代理服务以及其高稳定性、低资源消耗而广受欢迎。Nginx 能够通过非阻塞方式处理多个连…

第78讲 修改密码

系统管理实现 修改密码实现 前端 modifyPassword.vue&#xff1a; <template><el-card><el-formref"formRef":model"form":rules"rules"label-width"150px"><el-form-item label"用户名&#xff1a;&quo…

《CSS 简易速速上手小册》第2章:CSS 布局与定位(2024 最新版)

文章目录 2.1 Flexbox&#xff1a;灵活的布局解决方案2.1.1 基础知识2.1.2 重点案例&#xff1a;创建一个响应式导航菜单2.1.3 拓展案例 1&#xff1a;卡片布局2.1.4 拓展案例 2&#xff1a;中心对齐的登录表单 2.2 Grid 布局&#xff1a;网格系统的魔力2.2.1 基础知识2.2.2 重…

C语言求解猴子分桃子

问题&#xff1a;海滩上有一堆桃子&#xff0c;五只猴子来分。第一只猴子把这堆桃子平均分为五份&#xff0c;多了一个&#xff0c;这只 猴子把多的一个扔入海中&#xff0c;拿走了一份。第二只猴子把剩下的桃子又平均分成五份&#xff0c;又多了 一个&#xff0c;它同样把多的…

english_syntax

文章目录 什么是英语的句子&#xff1f;英语句子的结构句子的成分&#xff08;词性问题&#xff09;谓语系动词主语宾语表语 并列句从句引导词名词性从句形容词性从句&#xff08;定语从句&#xff09;副词性从句&#xff08;状语从句&#xff09; 特殊结构强调句型倒装句型虚拟…

C#log4net日志保存到Sqlserver数据库表(16)

要将log4net的日志保存到SQL Server数据库表中&#xff0c;你需要配置log4net使用一个数据库追加器&#xff08;appender&#xff09;&#xff0c;通常是AdoNetAppender。以下是一个示例配置&#xff0c;展示如何将log4net的日志输出配置为写入SQL Server数据库表。 首先&…

9.手写bind

bind 函数的实现步骤&#xff1a; 判断调用对象是否为函数&#xff0c;即使我们是定义在函数的原型上的&#xff0c;但是可能出现使用 call 等方式调用的情况。保存当前函数的引用&#xff0c;获取其余传入参数值。创建一个函数返回函数内部使用 apply 来绑定函数调用&#xf…

在CE和MSE损失函数中使用置信度的方法

以下是在一个半监督情景中 weak_output_ul为弱扰动出来的logits ,strong_output_ul为强扰动出来的logits 两者尺寸都可看作[8,2,256,256] CE: weak_x_ul self.encoder(A_ul, B_ul) weak_output_ul self.main_decoder(weak_x_ul) weak_targets …

PostgreSQL导出导入

导出常用方法 pg_dumpall&#xff1a;适合导出cluster中所有业务库 pg_dump&#xff1a;适合单个库、schema级、表级导出 copy&#xff1a;适合单表或带条件sql结果导出&#xff08;可导出为csv或txt格式&#xff09; 一、 pg_dumpall pg_dumpall可以转储cluster里的所有数…

C#面:Sleep() 和 Wait() 有什么区别

Sleep() 和 Wait() 是两个不同的方法&#xff0c;用于控制线程的执行。 Sleep() 方法&#xff1a; 是线程类 Thread 的静态方法&#xff0c;它使当前线程暂停执行一段时间。 Sleep() 方法接受一个参数&#xff0c;表示线程暂停的时间长度&#xff0c;单位是毫秒。 在暂停期…

C++ 11新特性之语法甜点4

概述 C 11中引入了许多简化编程工作的语法上的新特性&#xff0c;我们暂且美其名曰&#xff1a;“语法甜点”。书接上篇&#xff0c;我们继续介绍C 11中的这些“语法甜点”&#xff0c;也是最后一篇关于“语法甜点”的文章。 语法甜点16&#xff1a;新的字符串字面值 C 03提供了…

VitePress-13- 配置-title的作用详解

作用描述 1、title 是当前站点的标题&#xff1b;2、默认值是 &#xff1a;VitePress&#xff1b;3、当使用默认主题时&#xff0c;会直接展示在 页面的【导航条】中&#xff1b;4、一个特殊的作用 &#xff1a; 会作为单个页面的默认标题后缀&#xff01;除非又指定了【title…

WSL下如何使用Ubuntu本地部署Vits2.3-Extra-v2:中文特化修复版(新手从0开始部署教程)

环境&#xff1a; 硬&#xff1a; 台式电脑 1.cpu:I5 11代以上 2.内存16G以上 3.硬盘固态500G以上 4.显卡N卡8G显存以上 20系2070以上 本案例英伟达4070 12G 5.网络可连github 软&#xff1a; Win10 专业版 19045以上 WSL2 -Ubuntu22.04 1.bert-Vits2.3 Extra-v2:…

CSP-201912-1-报数

CSP-201912-1-报数 知识点总结 整数转化为字符串#include <string> string str_num to_string(num);字符串中查找是否包含字符‘7’&#xff1a;str_num.find(7) 未找到返回-1找到返回返回该字符在字符串中的位置&#xff08;即第一次出现的索引位置&#xff09; #i…

腾讯云4核8G服务器够用吗?容纳多少人同时访问?

腾讯云4核8G服务器支持多少人在线访问&#xff1f;支持25人同时访问。实际上程序效率不同支持人数在线人数不同&#xff0c;公网带宽也是影响4核8G服务器并发数的一大因素&#xff0c;假设公网带宽太小&#xff0c;流量直接卡在入口&#xff0c;4核8G配置的CPU内存也会造成计算…

java nio零拷贝

零拷贝是一种计算机执行IO操作的优化技术&#xff0c;其核心目标是减少数据拷贝次数&#xff0c;从而提高系统性能。它主要体现在以下几个方面&#xff1a; 1. **定义与原理**&#xff1a;零拷贝字面上的意思包括“零”和“拷贝”。其中&#xff0c;“拷贝”是指数据从一个存储…

西工大计算机学院复试问题整理

1. DMA DMA是一种无须CPU参与就可以让外设与系统内存之间进行双向数据传输的硬件机制1&#xff0c;而中断是指CPU在执行程序的过程中&#xff0c;出现了某些突发事件时必须暂停执行当前的程序&#xff0c;转去处理突发事件1。两者的主要区别是&#xff1a; 中断方式是在每个数据…