《动手学深度学习(PyTorch版)》笔记7.7

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。

Chapter7 Modern Convolutional Neural Networks

7.7 Densely Connected Networks(DenseNet)

稠密连接网络(DenseNet)在某种程度上是ResNet的逻辑扩展。ResNet将函数展开为
f ( x ) = x + g ( x ) . f(\mathbf{x}) = \mathbf{x} + g(\mathbf{x}). f(x)=x+g(x).也就是说,ResNet将 f f f分解为一个简单的线性项和一个复杂的非线性项。如果想将 f f f拓展成超过两部分的信息,一种方案便是DenseNet。ResNet和DenseNet的关键区别在于,DenseNe的输出是连接(用 [ , ] [,] [,]表示),而不是ResNet的简单相加(如下图所示),因此我们可以执行从 x \mathbf{x} x到其展开式的映射:

x → [ x , f 1 ( x ) , f 2 ( [ x , f 1 ( x ) ] ) , f 3 ( [ x , f 1 ( x ) , f 2 ( [ x , f 1 ( x ) ] ) ] ) , … ] . \mathbf{x} \to \left[ \mathbf{x}, f_1(\mathbf{x}), f_2([\mathbf{x}, f_1(\mathbf{x})]), f_3([\mathbf{x}, f_1(\mathbf{x}), f_2([\mathbf{x}, f_1(\mathbf{x})])]), \ldots\right]. x[x,f1(x),f2([x,f1(x)]),f3([x,f1(x),f2([x,f1(x)])]),].

最后,将这些展开式结合到多层感知机中,再次减少特征的数量。
在这里插入图片描述

DenseNet这个名字由变量之间的“稠密连接”而得来,稠密连接如下图所示。稠密网络主要由2部分构成:稠密块(dense block)和过渡层(transition layer)。前者定义如何连接输入和输出,而后者则控制通道数量,使其不会太复杂。

在这里插入图片描述

import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as pltdef conv_block(input_channels, num_channels):return nn.Sequential(nn.BatchNorm2d(input_channels), nn.ReLU(),nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))class DenseBlock(nn.Module):def __init__(self, num_convs, input_channels, num_channels):super(DenseBlock, self).__init__()layer = []for i in range(num_convs):layer.append(conv_block(num_channels * i + input_channels, num_channels))self.net = nn.Sequential(*layer)def forward(self, X):for blk in self.net:Y = blk(X)# 连接通道维度上每个块的输入和输出X = torch.cat((X, Y), dim=1)return X#在下面的例子中,我们定义一个有2个输出通道数为10的DenseBlock。
#使用通道数为3的输入时,我们会得到通道数为3+2x10=23的输出。
#卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为*增长率*(growth rate)。blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
print(Y.shape)#由于每个稠密块都会带来通道数的增加,过渡层可以用来控制模型复杂度。
#过渡层通过1x1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,以降低模型复杂度。def transition_block(input_channels, num_channels):#过渡层return nn.Sequential(nn.BatchNorm2d(input_channels), nn.ReLU(),nn.Conv2d(input_channels, num_channels, kernel_size=1),nn.AvgPool2d(kernel_size=2, stride=2))blk = transition_block(23, 10)
print(blk(Y).shape)b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))#与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与ResNet-18保持一致。 
#稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。
#num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]#num_convs_in_dense_blocks表示每个稠密块中包含的卷积层的数量。在这里,有4个稠密块,每个稠密块中包含4个卷积层。
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):#enumerate()函数用于同时遍历列表元素及其索引blks.append(DenseBlock(num_convs, num_channels, growth_rate))# 上一个稠密块的输出通道数num_channels += num_convs * growth_rate# 在稠密块之间添加一个转换层,使通道数量减半if i != len(num_convs_in_dense_blocks) - 1:blks.append(transition_block(num_channels, num_channels // 2))num_channels = num_channels // 2net = nn.Sequential(b1, *blks,nn.BatchNorm2d(num_channels), nn.ReLU(),nn.AdaptiveAvgPool2d((1, 1)),nn.Flatten(),nn.Linear(num_channels, 10))lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
plt.show()

训练结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/678884.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重温阿里云宝塔面板部署前后端项目

首先祝大家新年快乐啊! 回到老家,便打算趁这一段空闲时间提升一下自己,重点是学习实践一下echarts相关内容,很多公司项目都需要实现可视化,所以在bilibili上找了黑马的一个教程开始学习,不同的是&#xff…

电子电器架构 —— 区域控制器是未来架构的正解吗?

电子电器架构 —— 区域控制器是未来架构的正解吗? 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶…

Linux(Ubuntu) 环境搭建:远程终端软件(MobeXterm)

一、MobaXterm下载地址 服务器的远程终端软件我选择的是:MobaXtermMobaXterm 官方网站下载地址:https://mobaxterm.mobatek.net/download.htmlMobaXterm 汉化版下载地址:https://github.com/RipplePiam/MobaXterm-Chinese-Simplified 二、官…

C# 字体大小的相关问题

设置字体大小无法这么写, button1.Font.Size 20; 这个是只读属性; 把字体大小改为16, button2.Font new Font(button2.Font.Name, 16); 程序运行的时候先看一下窗体和控件的默认字体尺寸,都是9;然后点b…

汽车出租管理系统

文章目录 汽车出租管理系统一、系统演示二、项目介绍三、系统部分功能截图四、部分代码展示五、底部获取项目源码(9.9¥带走) 汽车出租管理系统 一、系统演示 汽车租赁系统 二、项目介绍 语言:java 框架:SpringBoot、…

Zabbix报警机制、配置钉钉机器人、自动发现、主动监控概述、配置主动监控、zabbix拓扑图、nginx监控实例

目录 配置告警 用户数超过50,发送告警邮件 实施 验证告警配置 配置钉钉机器人告警 创建钉钉机器人 编写脚本并测试 添加报警媒介类型 为用户添加报警媒介 创建触发器 创建动作 验证 自动发现 配置自动发现 主动监控 配置web2使用主动监控 修改配置文…

《统计学简易速速上手小册》第5章:回归分析(2024 最新版)

文章目录 5.1 线性回归基础5.1.1 基础知识5.1.2 主要案例:员工薪资预测5.1.3 拓展案例 1:广告支出与销售额关系5.1.4 拓展案例 2:房价与多个因素的关系 5.2 多元回归分析5.2.1 基础知识5.2.2 主要案例:企业收益与多因素关系分析5.…

Linux上MySQL安装部署

准备工作 在/opt/software目录下创建mysql目录用来存放MySQL安装包: 链接:https://pan.baidu.com/s/1pjc-w6MSNlpptUjsZXNEdQ?pwd6666 cd /opt/softwaremkdir mysql 将安装包上传到mysql目录 安装部署 (1)卸载MySQL依赖,虽…

Java图形化界面编程——弹球游戏 笔记

Java也可用于开发一些动画。所谓动画,就是间隔一定的时间(通常小于0 . 1秒 )重新绘制新的图像,两次绘制的图像之间差异较小,肉眼看起来就成了所谓的动画 。 ​ 为了实现间隔一定的时间就重新调用组件的 repaint()方法,可以借助于…

C++ 贪心 区间问题 区间分组

给定 N 个闭区间 [ai,bi] ,请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。 输出最小组数。 输入格式 第一行包含整数 N ,表示区间数。 接下来 N 行&…

Linux cp命令注意事项

目录 一. 基本语法二. 文件复制到文件夹时的路径存在问题三. 文件复制到文件夹时,记得给文件夹路径加上/ 一. 基本语法 -r:递归地复制目录及其内容。-p:保留源文件或目录的属性(包括权限、所有者、组、时间戳等)。 c…

Hugging Face 刚刚推出了一款开源的 AI 助手制造工具,直接向 OpenAI 的定制 GPT 挑战

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

Linux——动静态库

基础知识:动vs静 类型动静加载时机运行时编译时可复用性多个文件只需要加载一份库文件每个文件都需要加载一份文件性能链接次数越多越有优势链接次数越少越有优势 代码编写 静态库 生成静态库 libmath.a:add.o sub.oar -rc $ $^%.o:%.cgcc -c $<使用静态库 头文件和工…

《动手学深度学习(PyTorch版)》笔记8.6

注&#xff1a;书中对代码的讲解并不详细&#xff0c;本文对很多细节做了详细注释。另外&#xff0c;书上的源代码是在Jupyter Notebook上运行的&#xff0c;较为分散&#xff0c;本文将代码集中起来&#xff0c;并加以完善&#xff0c;全部用vscode在python 3.9.18下测试通过&…

数据结构(2) 线性表

线性表 线性表的定义线性表的基本操作lnitList(&L)DestroyList(&L)Listlnsert(&L,i,e)ListDelete(&L,i,&e)LocateElem(L,e)GetElem(L,i)Length(L)PrintList(L)Empty(L)Tips:引用值 小结 根据数据结构的三要素–逻辑结构、数据的运算、存储结构&#xff0c;…

GeoServer 2.11.1升级解决Eclipse Jetty 的一系列安全漏洞问题

Eclipse Jetty 资源管理错误漏洞(CVE-2021-28165) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7656) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7657) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7658) Jetty 信息泄露漏洞(CVE-2017-9735) Eclipse Jetty 安全漏洞(CVE-2022-20…

Javaweb之SpringBootWeb案例之事务进阶的详细解析

1.3 事务进阶 前面我们通过spring事务管理注解Transactional已经控制了业务层方法的事务。接下来我们要来详细的介绍一下Transactional事务管理注解的使用细节。我们这里主要介绍Transactional注解当中的两个常见的属性&#xff1a; 异常回滚的属性&#xff1a;rollbackFor 事…

项目02《游戏-14-开发》Unity3D

基于 项目02《游戏-13-开发》Unity3D &#xff0c; 任务&#xff1a;战斗系统之击败怪物与怪物UI血条信息 using UnityEngine; public abstract class Living : MonoBehaviour{ protected float hp; protected float attack; protected float define; …

Linux网络编程——tcp套接字

文章目录 主要代码关于构造listen监听accepttelnet测试读取信息掉线重连翻译服务器演示 本章Gitee仓库&#xff1a;tcp套接字 主要代码 客户端&#xff1a; #pragma once#include"Log.hpp"#include<iostream> #include<cstring>#include<sys/wait.h…

第73左侧菜单实现

layout下面新建menu layout index.vue导入menu import Menu from /views/layout/menu菜单实现&#xff1a; <template><el-menuactive-text-color"#ffd04b"background-color"#2d3a4b"class"el-menu-vertical-demo"default-active&quo…