Elasticsearch 对比传统数据库:深入挖掘 Elasticsearch 的优势

当你为项目选择数据库或搜索引擎时,了解每个选项的细微差别至关重要。 今天,我们将深入探讨 Elasticsearch 的优势,并探讨它与传统 SQL 和 NoSQL 数据库的比较。

1. Elasticsearch简介

Elasticsearch 以强大的 Apache Lucene 库为基础,是一个分布式搜索和分析引擎。 它以其速度、可扩展性以及快速索引大量数据的能力而闻名。 与许多传统数据库不同,Elasticsearch 是为以搜索为中心的应用程序量身定制的,提供许多数据库本身不支持的功能。更多关于 Elasticsearch 的介绍,请参阅文章 “Elasticsearch 简介”。

特别指出:早期的版本(截止7.10)支持 Open Source。现在的版本是 Open and free。

有关 Elasticsearch 的版权问题,请参阅文章 “Elastic:开发者上手指南” 中的 “版权介绍” 章节。

2. Elasticsearch 的优势

a. 全文搜索功能

  • 倒排索引:Elasticsearch 的核心使用倒排索引,这是一种列出每个唯一单词及其在数据中对应位置的数据结构。 这种结构针对速度进行了优化,可实现跨海量数据集的快速文本搜索。详细阅读文章 “Elasticsearch:inverted index,doc_values 及 source”。
  • 高级文本处理:Elasticsearch 提供开箱即用的功能,例如标记化(将文本分解为单个单词或术语)、词干提取(将单词还原为其根形式)和处理同义词等。 这些过程增强了搜索相关性和精确度。详细阅读文章 “Elasticsearch: analyzer”。
  • 相关性评分和排名:当你在 Elasticsearch 中搜索时,它不仅会查找匹配项,还会使用各种算法根据相关性对它们进行排名,确保首先返回最相关的结果。相关阅读 “Elasticsearch:分布式计分”。

b. 数据的灵活性

  • JSON 原生结构:Elasticsearch 将数据视为 JSON 文档。 这种格式不仅在现代 Web 应用程序中普遍存在,而且还允许对数据进行分层结构,从而实现更复杂的查询。
  • 动态映射:与某些需要固定模式的数据库不同,Elasticsearch 可以自动检测文档中字段的数据类型并为其建立索引。 这种灵活性有利于不断发展的数据集。详细阅读 “Elasticsearch:Dynamic mapping”。

c. 批量索引

  • 高效的数据摄取:Elasticsearch 的 bulk API 允许在单个请求中执行多个索引、更新或删除操作。 这种简化的方法可确保高速数据摄取,尤其是在处理大量信息时。
  • 并行处理:Elasticsearch 旨在处理跨分布式节点的同步索引操作。 这种并发处理可确保快速对大量数据建立索引。

d. 分布式设计

  • 分片和复制:Elasticsearch 中的数据本质上分为 “分片”。 这些分片可以跨节点复制,从而提供可扩展性(通过添加更多分片)和弹性(通过副本)。 随着 你的数据增长,Elasticsearch 也会与你一起成长。更多关于分片的描述,请阅读文章 “Elasticsearch 中的一些重要概念: cluster, node, index, document, shards 及 replica”。
  • 水平可扩展性:需要处理更多数据? 只需向你的 Elasticsearch 集群添加更多节点即可。 系统自动分配您的数据和查询负载,确保最佳性能。
  • 容错:在节点发生故障时,副本分片的存在可确保你的数据保持可用,并且你的搜索操作可以继续进行而不会中断。

e. 实时索引

  • 近乎即时的数据可用性:Elasticsearch 中的数据一旦被摄取,几乎可以立即用于搜索操作。 这种实时索引功能得益于其优化的刷新间隔,确保你的应用程序始终能够访问最新数据。请详细阅读 “Elasticsearch:Elasticsearch 中的 refresh 和 flush 操作指南”。
  • 针对高吞吐量进行了优化:除了实时索引之外,Elasticsearch 还旨在处理连续的数据更新流,这使其对于日志监控或实时数据分析等时间敏感型应用程序特别有效。

3. 传统数据库可能具有优势的地方

a. ACID 事务

SQL 数据库通常优先考虑强 ACID 保证,使它们更适合需要严格数据完整性和一致性的应用程序。

b. 复杂的关系

SQL 数据库是围绕数据规范化和关系设计的。 他们擅长处理复杂的连接和关系数据建模。

c. 通用用例

虽然 Elasticsearch 擅长搜索和分析,但 SQL 数据库更加通用,适合各种应用程序。

4. Elasticsearch最适合的场景

  • 日志记录和监控:由于其能够处理大量数据并使其可近实时搜索。
  • 全文搜索应用:例如电子商务平台,其中搜索、过滤和排名的组合是必不可少的。
  • 分析和可视化:Kibana 等工具可以将 Elasticsearch 转变为强大的数据可视化平台。

在 Elastic Stack 的发布中,围绕 Elasticsearch,它提供了三大开箱即用的解决方案:企业搜索(Enterprise Search)可观则性(Observability)安全性(Security)

5. 结论

在数据库和搜索引擎的广阔世界中,每种工具都有其独特的优势。 虽然 Elasticsearch 对于以搜索为中心和数据量大的应用程序来说无疑是强大的,但评估你的特定项目的需求至关重要。 通过了解每个选项的功能和权衡,你可以确保利用正确的工具来应对独特的挑战。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/67881.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法通关村第9关【白银】| 二分查找与搜索树高频问题

基于二分查找的拓展问题 1.山脉数组的峰顶索引 思路&#xff1a;二分查找 山峰有三种状态&#xff1a;需要注意数组边界 1.顶峰&#xff1a;arr[mid]>arr[mid1]&&arr[mid]>arr[mid-1] 2.上坡&#xff1a;arr[mid]<arr[mid1] 3.下坡&#xff1a;arr[mid]…

l8-d6 socket套接字及TCP的实现框架

一、socket套接字 /*创建套接字*/ int socket(int domain, int type, int protocol); /*绑定通信结构体*/ int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen); /*监听套接字*/ int listen(int sockfd, int backlog); /*处理客户端发起的连接&#xff0…

智能合约安全,著名的区块链漏洞:双花攻击

智能合约安全&#xff0c;著名的区块链漏洞&#xff1a;双花攻击 介绍: 区块链技术通过提供去中心化和透明的系统彻底改变了各个行业。但是&#xff0c;与任何技术一样&#xff0c;它也不能免受漏洞的影响。一个值得注意的漏洞是双花攻击。在本文中&#xff0c;我们将深入研究…

【数据结构练习】栈的面试题集锦

目录 前言&#xff1a; 1.进栈过程中可以出栈的选择题 2.将递归转化为循环 3.逆波兰表达式求值 4.有效的括号 5. 栈的压入、弹出序列 6. 最小栈 前言&#xff1a; 数据结构想要学的好&#xff0c;刷题少不了&#xff0c;我们不仅要多刷题&#xff0c;还要刷好题&#x…

16-MyCat

一 Mycat概述 1 什么是Mycat 什么是Mycat Mycat是数据库中间件&#xff0c;所谓数据库中间件是连接Java应用程序和数据库中间的软件。 为什么要用Mycat 遇到问题&#xff1a; Java与数据库的紧耦合高访问量高并发对数据库的压力读写请求数据不一致 2 Mycat与其他中间件区别 目…

【USRP】调制解调系列6:16APSK、32APSK 、基于labview的实现

APSK APSK是&#xff0c;与传统方型星座QAM&#xff08;如16QAM、64QAM&#xff09;相比&#xff0c;其分布呈中心向外沿半径发散&#xff0c;所以又名星型QAM。与QAM相比&#xff0c;APSK便于实现变速率调制&#xff0c;因而很适合目前根据信道及业务需要分级传输的情况。当然…

分布式环境下的数据同步

一般而言elasticsearch负责搜索&#xff08;查询&#xff09;&#xff0c;而sql数据负责记录&#xff08;增删改&#xff09;&#xff0c;elasticsearch中的数据来自于sql数据库&#xff0c;因此sql数据发生改变时&#xff0c;elasticsearch也必须跟着改变&#xff0c;这个就是…

jmeter调试错误大全

一、前言 在使用jmeter做接口测试的过程中大家是不是经常会遇到很多问题&#xff0c;但是无从下手&#xff0c;不知道从哪里开始找起&#xff0c;对于初学者而言这是一个非常头痛的事情。这里结合笔者的经验&#xff0c;总结出以下方法。 二、通过查看运行日志调试问题 写好…

STM32存储左右互搏 I2C总线读写FRAM MB85RC16

STM32存储左右互搏 I2C总线读写FRAM MB85RC16 在较低容量存储领域&#xff0c;除了EEPROM的使用&#xff0c;还有铁电存储器FRAM的使用&#xff0c;相对于EEPROM, 同样是非易失性存储单元&#xff0c;FRAM支持更高的访问速度&#xff0c; 其主要优点为没有EEPROM持续写操作跨页…

Python虚拟环境venv下安装playwright介绍及记录

playwright介绍 Playwright是一个用于自动化Web浏览器测试和Web数据抓取的开源库。它由Microsoft开发&#xff0c;支持Chrome、Firefox、Safari、Edge和WebKit浏览器。Playwright的一个主要特点是它能够在所有主要的操作系统&#xff08;包括Windows、Linux和macOS&#xff09…

计算机毕设 大数据商城人流数据分析与可视化 - python 大数据分析

文章目录 0 前言课题背景分析方法与过程初步分析&#xff1a;总体流程&#xff1a;1.数据探索分析2.数据预处理3.构建模型 总结 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到…

SMU200A/罗德与施瓦茨SMU200A信号发生器

181/2461/8938产品概述 R&S SMU200A信号发生器旨在满足现代通信系统研发及其生产中遇到的所有要求。R&S SMU200A矢量信号发生器不仅将多达两个独立的信号发生器组合在一个只有四个高度单位的机柜中&#xff0c;还提供无与伦比的RF和基带特性。 Rohde & Schwarz S…

Vue3数值动画(NumberAnimation)

效果如下图&#xff1a;在线预览 APIs 参数说明类型默认值必传from数值动画起始数值number0falseto数值目标值number1000falseduration数值动画持续时间&#xff0c;单位msnumber3000falseautoplay是否自动开始动画booleantruefalseprecision精度&#xff0c;保留小数点后几位…

NineData 中标移动云数据库传输项目

导读近日&#xff0c;玖章算术 NineData 智能数据管理平台成功中标《2023 年移动云数据库传输服务软件项目》&#xff0c;中标金额为 406 万。这标志着玖章算术 NineData 平台已成功落地顶级运营商行业&#xff0c;并在数据管理方面实现了大规模应用实践。 NineData 中标 2023 …

SQLite简单介绍

一.简单介绍 SQLite是一款轻型的数据库&#xff0c;是遵守ACID的关系型数据库管理系统&#xff0c;它包含在一个相对小的C库中。它是D.RichardHipp建立的公有领域项目。它的设计目标是嵌入式的&#xff0c;而且已经在很多嵌入式产品中使用了它&#xff0c;它占用资源非常的低&…

音频基础知识

文章目录 前言一、音频基本概念1、音频的基本概念①、声音的三要素②、音量与音调③、几个基本概念④、奈奎斯特采样定律 2、数字音频①、采样②、量化③、编码④、其他相关概念<1>、采样位数<2>、通道数<3>、音频帧<4>、比特率&#xff08;码率&#…

02-Flask-对象初始化参数

对象初始化参数 前言对象初始化参数import_namestatic_url_pathstatic_foldertemplate_floder 前言 本篇来学习Flask中对象初始化参数 对象初始化参数 import_name Flask程序所在的包(模块)&#xff0c;传__name__就可以 _name_ 是一个标识 Python 模块的名字的变量&#x…

2023_Spark_实验六:Scala面向对象部分演示(二)(IDEA开发)

7、Scala中的apply方法&#xff08;&#xff09; 遇到如下形式的表达式时&#xff0c;apply方法就会被调用&#xff1a; Object(参数1,参数2,......,参数N) 通常&#xff0c;这样一个apply方法返回的是伴生类的对象&#xff1b;其作用是为了省略new关键字 Object的apply方法…

MATLAB旋转动图的绘制

MATLAB旋转动图的绘制 文章目录 MATLAB旋转动图的绘制1、动图效果2、matlab代码 利用matlab实现三维旋转动图的绘制。 1、动图效果 2、matlab代码 close all clear clcf(x,y,z)(x.^2 (9./4).*y.^2 z.^2 - 1).^3 - x.^2.*z.^3 - (9./80).*y.^2.*z.^3; [x,y,z]meshgrid(linspac…

linux并发服务器 —— linux网络编程(七)

网络结构模式 C/S结构 - 客户机/服务器&#xff1b;采用两层结构&#xff0c;服务器负责数据的管理&#xff0c;客户机负责完成与用户的交互&#xff1b;C/S结构中&#xff0c;服务器 - 后台服务&#xff0c;客户机 - 前台功能&#xff1b; 优点 1. 充分发挥客户端PC处理能力…