XGB-5: DART Booster

XGBoost 主要结合了大量的回归树和一个小的学习率。在这种情况下,早期添加的树是重要的,而晚期添加的树是不重要的。

Vinayak 和 Gilad-Bachrach 提出了一种将深度神经网络社区的 dropout 技术应用于梯度提升树的新方法,并在某些情况下报告了更好的结果

以下是新的树增强器 dart 的说明。

原始论文

Rashmi Korlakai Vinayak, Ran Gilad-Bachrach。“DART: Dropouts meet Multiple Additive Regression Trees.” [arXiv]。

特性

  • 通过删除树来解决过拟合问题。
    • 可以阻止不重要的普通树(以纠正普通错误)

由于训练中引入的随机性,可以期待以下一些差异:

  • 由于随机丢弃dropout会阻止使用预测缓冲区,因此训练可能比 gbtree

  • 由于随机性,早停Early-stop可能不稳定

工作原理

  • 在第 m m m训练轮次中,假设 k k k棵树被选中丢弃。

  • D = ∑ i ∈ K F i D = \sum_{i \in \mathbf{K}} F_i D=iKFi为被丢弃树的叶节点分数, F m = η F ~ m F_m = \eta \tilde{F}_m Fm=ηF~m为新树的叶节点分数。

  • 目标函数如下:

O b j = ∑ j = 1 n L ( y j , y ^ j m − 1 − D j + F ~ m ) Ω ( F ~ m ) . \mathrm{Obj} = \sum_{j=1}^n L \left( y_j, \hat{y}_j^{m-1} - D_j + \tilde{F}_m \right)\Omega \left( \tilde{F}_m \right). Obj=j=1nL(yj,y^jm1Dj+F~m)Ω(F~m).

  • D D D F m F_m Fm是超调,因此使用缩放因子

y ^ j m = ∑ i ∉ K F i + a ( ∑ i ∈ K F i + b F m ) . \hat{y}_j^m = \sum_{i \not\in \mathbf{K}} F_i + a \left( \sum_{i \in \mathbf{K}} F_i + b F_m \right) . y^jm=iKFi+a(iKFi+bFm).

参数

Booster dart 继承自 gbtree booster,因此支持 gbtree 的所有参数,比如 etagammamax_depth 等。

以下是额外的参数:

  • sample_type:采样算法的类型。

    • uniform:(默认)以均匀方式选择要删除的树。
    • weighted:以权重比例选择要删除的树。
  • normalize_type:规范化算法的类型。

    • tree:(默认)新树的权重与每个被删除的树相同。

      a ( ∑ i ∈ K F i + 1 k F m ) = a ( ∑ i ∈ K F i + η k F ~ m ) ∼ a ( 1 + η k ) D = a k + η k D = D , a = k k + η \begin{split}a \left( \sum_{i \in \mathbf{K}} F_i + \frac{1}{k} F_m \right) &= a \left( \sum_{i \in \mathbf{K}} F_i + \frac{\eta}{k} \tilde{F}_m \right) \\ &\sim a \left( 1 + \frac{\eta}{k} \right) D \\ &= a \frac{k + \eta}{k} D = D , \\ &\quad a = \frac{k}{k + \eta}\end{split} a(iKFi+k1Fm)=a(iKFi+kηF~m)a(1+kη)D=akk+ηD=D,a=k+ηk

    • forest:新树的权重等于被删除的树的权重之和(森林)。

      a ( ∑ i ∈ K F i + F m ) = a ( ∑ i ∈ K F i + η F ~ m ) ∼ a ( 1 + η ) D = a ( 1 + η ) D = D , a = 1 1 + η . \begin{split}a \left( \sum_{i \in \mathbf{K}} F_i + F_m \right) &= a \left( \sum_{i \in \mathbf{K}} F_i + \eta \tilde{F}_m \right) \\ &\sim a \left( 1 + \eta \right) D \\ &= a (1 + \eta) D = D , \\ &\quad a = \frac{1}{1 + \eta} .\end{split} a(iKFi+Fm)=a(iKFi+ηF~m)a(1+η)D=a(1+η)D=D,a=1+η1.

  • dropout_rate: 丢弃率。

    • 范围:[0.0, 1.0]
  • skip_dropout: 跳过丢弃的概率。

    • 如果跳过了dropout,新树将以与 gbtree 相同的方式添加。
    • 范围:[0.0, 1.0]

示例

import xgboost as xgb# read in data
dtrain = xgb.DMatrix('./xgboost/demo/data/agaricus.txt.train?format=libsvm')
dtest = xgb.DMatrix('./xgboost/demo/data/agaricus.txt.test?format=libsvm')# specify parameters via map
param = {'booster': 'dart','max_depth': 5, 'learning_rate': 0.1,'objective': 'binary:logistic','sample_type': 'uniform','normalize_type': 'tree','rate_drop': 0.1,'skip_drop': 0.5}num_round = 50
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)

参考

  • https://xgboost.readthedocs.io/en/latest/tutorials/dart.html
  • https://arxiv.org/abs/1505.01866

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/677048.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

客观看待前后端分离,优劣、场景、对程序员职业的影响

前后端分离倡导多年了,现在基本成为了开发的主流模式了,贝格前端工场承接的前端项目只要不考虑seo的,都采用前后端分离模式。 一、在前端开发中,前后端分离是指什么 在前端开发中,前后端分离是一种架构模式&#xff…

机器学习系列——(二十)密度聚类

引言 在机器学习的无监督学习领域,聚类算法是一种关键的技术,用于发现数据集中的内在结构和模式。与传统的基于距离的聚类方法(如K-Means)不同,密度聚类关注于数据分布的密度,旨在识别被低密度区域分隔的高…

网络安全05-sql-labs靶场全网最详细总结

目录 一、环境准备,sql注入靶场环境网上全是保姆教程,自己搜搜,这个不进行描述 二、注入方式了解 三、正式开始注入闯关 3.1第一关(字符型注入) 3.1.1首先先测试一下字符 ​3.1.2尝试单引号闭合看输出什么 3.1.3…

mysql RR、RC隔离级别实现原理

事务隔离级别实现过程 快照读(select语句) 获取事务自己版本号,即事务 ID获取 Read View 查询得到数据,然后 Read View 中事务版本号进行比较。如果不符合 Read View 可见性规则(看最新数据还是副本里的数据&#xf…

STM32F1 - 标准外设库_规范

STM32F10x_StdPeriph_Lib_V3.6.0 1> 头文件包含关系2> .c文件内部结构3> 宏定义位置4> 位掩码bit mask5> .c文件中定义私有变量6> 枚举类型定义 1> 头文件包含关系 1个头文件stm32f10x.h 就把整个MCU以及标准外设库,就管理了; 2>…

101. 对称二叉树 - 力扣(LeetCode)

题目描述 给你一个二叉树的根节点 root , 检查它是否轴对称。 题目示例 输入:root [1,2,2,3,4,4,3] 输出:true 解题思路 首先想清楚,判断对称二叉树要比较的是哪两个节点,要比较的可不是左右节点! 对于…

高级数据结构与算法 | 布谷鸟过滤器(Cuckoo Filter):原理、实现、LSM Tree 优化

文章目录 Cuckoo Filter基本介绍布隆过滤器局限变体 布谷鸟哈希布谷鸟过滤器 实现数据结构优化项Victim Cache备用位置计算半排序桶 插入查找删除 应用场景:LSM 优化 Cuckoo Filter 基本介绍 如果对布隆过滤器不太了解,可以看看往期博客:海量…

C++ 动态规划 数位统计DP 计数问题

给定两个整数 a 和 b ,求 a 和 b 之间的所有数字中 0∼9 的出现次数。 例如,a1024,b1032 ,则 a 和 b 之间共有 9 个数如下: 1024 1025 1026 1027 1028 1029 1030 1031 1032 其中 0 出现 10 次,1 出现 10…

在ComfyUI上安装动画生成插件Stable Video Diffusion

上一章节我们介绍了Stable video diffusion的安装及初步使用,我们发现SVD的运行需要较大的显存,但是如果将SVD作为插件安装在ComfyUI上面,发现ComfyUI可以很好的管理显存,同时配合ComfyUI的动画制功能,可以让应用更加丰…

政安晨:示例演绎TensorFlow的官方指南(三){快速使用数据可视化工具TensorBoard}

这篇文章里咱们演绎TensorFLow的数据可视化工具:TensorBoard。 在机器学习中,要改进模型的某些参数,您通常需要对其进行衡量。TensorBoard 是用于提供机器学习工作流期间所需测量和呈现的工具。它使您能够跟踪实验指标(例如损失和…

高防服务器出租的优势及特点

高防服务器出租是指租用具备高防御能力的服务器,用于应对网络攻击、保护网站和数据安全。那么为什么会选择高防服务器出租,小编为您整理发布高防服务器出租的优势及特点。 高防服务器通常具备以下特点: 1. 高性能硬件配置:高防服务…

【八大排序】归并排序 | 计数排序 + 图文详解!!

📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构冒险记 ✅C语言进阶之路 🌅 有航道的人,再渺小也不会迷途。 文章目录 一、归并排序1.1 基本思想 动图演示2.2 递归版本代码实现 算法步骤2.3 非递归版本代…

Linux apmd命令教程:管理和监控电源管理功能(附案例详解和注意事项)

Linux apmd命令介绍 apmd 是 Advanced Power Management BIOS daemon 的缩写,它是一个用于管理和监控电源管理功能的守护进程。apmd 负责 BIOS 进阶电源管理 (APM) 相关的记录,警告与管理工作。 Linux apmd命令适用的Linux版本 apmd 命令在大多数 Lin…

containerd中文翻译系列(二十)快照器

快照器管理容器文件系统的快照。 可通过运行 ctr plugins ls 或 nerdctl info 查看可用的快照器。 核心快照器插件 通用: overlayfs(默认): OverlayFS. 该驱动程序类似于 Docker/Moby 的 "overlay2 "存储驱动程序&a…

机器学习:回归决策树(Python)

一、平方误差的计算 square_error_utils.py import numpy as npclass SquareErrorUtils:"""平方误差最小化准则,选择其中最优的一个作为切分点对特征属性进行分箱处理"""staticmethoddef _set_sample_weight(sample_weight, n_samp…

Blender教程(基础)--试图的显示模式-22

一、透视模式(AltZ) 透视模式下可以实现选中透视的物体信息 发现选中了透视区的所有顶点 二、试图着色模式-显示网格边框 三、试图着色模式-显示实体 三、试图着色模式-材质预览 四、试图着色模式-显示渲染预览

深入解析MySQL 8:事务数据字典的变革

随着数据库技术的不断发展和完善,元数据的管理成为了一个日益重要的议题。在MySQL 8中,一项引人注目的新特性是引入了事务数据字典(Transaction Data Dictionary,简称TDD),它改变了元数据的管理方式&#x…

医学图像隐私保护

随着数字医疗技术的快速发展,医学图像例如X光片、CT扫描、MRI及超声波扫描已成为现代医疗診断和治療的基石。然而,同时这些包含敏感个人信息的图像也面临着隐私和安全方面的挑战。随着数据泄露事件的增多,医学图像隐私保护变得尤为重要。 从…

Ps:直接从图层生成文件(图像资源)

通过Ps菜单:文件/导出/将图层导出到文件 Layers to Files命令,我们可以快速地将当前文档中的每个图层导出为同一类型、相同大小和选项的独立文件。 Photoshop 还提供了一个功能,可以基于文档中的图层或图层组的名称,自动生成指定大…

CleanMyMacX4.14.6如何清理mac垃圾内存

一直以来,苹果电脑的运行流畅度都很好,但是垃圾内存多了磁盘空间慢慢变少,还是会造成卡顿的。这篇文章就告诉大家电脑如何清理垃圾内存,电脑如何清理磁盘空间。 一、电脑如何清理垃圾内存 垃圾内存指的是各种缓存文件和系统垃圾…