自然语言学习nlp 六

https://www.bilibili.com/video/BV1UG411p7zv?p=118

Delta Tuning,尤其是在自然语言处理(NLP)和机器学习领域中,通常指的是对预训练模型进行微调的一种策略。这种策略不是直接更新整个预训练模型的权重,而是仅针对模型的一部分权重进行微小的调整,这部分权重通常被称为“delta权重”或“微调参数”。

具体到NLP任务中,Delta Tuning可以应用于:

  1. Soft Prompt Tuning:在基于Transformer的预训练模型中,通过添加一组可学习的连续向量(软提示)来适应特定任务,而不仅仅是调整原始模型的所有参数。

  2. Adapter-based Fine-Tuning:在预训练模型的每一层插入小型模块(适配器),仅对这些适配器进行训练以适应新任务,而不改变模型原来的主体结构和大部分权重。

  3. Parameter-efficient Fine-Tuning:在有限资源条件下,只对一小部分关键参数进行优化,以实现高效且节省资源的模型微调。

Delta Tuning的主要优势在于能够更好地保留预训练模型学到的通用知识,并减少过拟合的风险以及计算资源的需求。

在自然语言处理(NLP)和深度学习中,"hidden state"(隐藏状态)通常是指循环神经网络(RNNs)或者Transformer等模型中,在计算过程中产生的内部表示。这些隐藏状态用来捕捉输入序列中的历史信息和上下文依赖。

对于循环神经网络(如LSTM、GRU等):

  • 隐藏状态是时间步之间传递的关键信息载体。在每个时间步,RNN都会根据当前输入和上一时间步的隐藏状态计算出一个新的隐藏状态。这个新的隐藏状态不仅包含了当前时刻的信息,还累积了到目前为止整个序列的历史信息。

对于Transformer模型:

  • 虽然Transformer不是递归结构,但它也有类似的概念——“隐状态”体现在自注意力机制下各层的输出中,每一层的隐状态可以看作是对输入序列的多层次、多角度的理解或表征。

在不同的上下文中,隐藏状态能够捕获文本序列中的不同模式和特征,并被用于下游任务如分类、生成、翻译等。

MLP 是“Multilayer Perceptron”的缩写,中文通常翻译为多层感知器或多层神经网络。它是一种前馈神经网络(Feedforward Neural Network),由多个相互连接的神经元层组成,每一层都包含若干个节点(或称神经元)。在 MLP 中,信息从输入层经过一系列隐藏层处理后,在输出层产生最终结果。

MLP 的基本结构包括:

  1. 输入层:接收原始特征数据,并将其转换成向量形式。
  2. 隐藏层:每个隐藏层中的神经元都会对上一层的输出进行非线性变换,这个过程通常涉及加权求和以及一个激活函数(如ReLU、sigmoid、tanh等)的应用,用于引入模型的非线性表达能力。
  3. 输出层:最后一层提供网络的预测结果,其节点数量取决于任务类型,例如对于分类问题,节点数对应类别数目,且常常会使用softmax函数来归一化输出概率。

MLPs 通过反向传播算法训练权重参数,以最小化预测输出与实际目标之间的差异(即损失函数)。它们广泛应用于各种机器学习任务,包括分类、回归分析及函数逼近等。

在自然语言处理(NLP)中,"embedding"(嵌入或词嵌入)是一种将词汇表征为连续向量的技术。这种技术旨在将离散的、高维的词汇转换成低维且稠密的向量形式,以便于计算机理解和处理。

具体来说:

  • 词嵌入:每个单词都被映射到一个固定维度的向量空间中的一个点,使得语义相似的词在该空间中的距离较近,而不相关的词则相对较远。例如,通过训练如Word2Vec、GloVe或FastText等模型可以得到词嵌入。

  • 句子/文档嵌入:除了单词级别的嵌入外,还可以生成整个句子或文档的向量表示,这些通常是基于单词嵌入并通过加权平均、池化操作或者更复杂的深度学习结构(如Transformer)来计算得出。

词嵌入的主要优势在于它们能够捕捉词汇之间的语义和语法关系,从而极大地提升了NLP任务的性能,比如文本分类、情感分析、问答系统、机器翻译等等。

在自然语言处理(NLP)的神经网络模型中,激活函数(activation function)是应用于每个神经元上的非线性转换函数。这个函数的作用是引入非线性特性到模型中,这对于解决复杂问题如文本分类、语义分析、机器翻译等至关重要,因为自然语言本身具有高度的非线性特征。

在一个典型的人工神经元结构中,在计算了输入信号与权重的加权和之后(这可以看作是模拟生物神经元的多个突触接收到信号后的整合),会将该加权和通过一个激活函数来得到神经元的输出值。这个输出值随后被作为下一层神经元的输入。

常见的激活函数包括:

  • Sigmoid:输出介于0和1之间,常用于二元分类问题的最后一层,但其饱和性会导致梯度消失问题。
  • ReLU (Rectified Linear Unit):输出大于0时为线性,小于等于0时为0,广泛应用于隐藏层,缓解了梯度消失的问题。
  • Tanh (双曲正切函数):输出范围在-1至1之间,相比Sigmoid有更均匀的梯度分布,因此在某些深度学习架构中更为常用。
  • GELU (Gaussian Error Linear Units):近似实现,尤其在Transformer等现代NLP模型中表现良好,因为它能够保持较好的线性区间的梯度同时引入非线性。

这些激活函数的选择取决于特定任务的需求和模型设计的考量,旨在优化模型的学习能力和泛化性能。

在自然语言处理(NLP)中,"neuron" 通常指的是神经网络模型中的一个计算单元。在深度学习的背景下,神经元是对生物神经元的一种抽象模拟,其基本工作原理如下:

  1. 输入层:在NLP任务中,每个神经元接收来自上一层或原始输入数据的信号,对于文本数据而言,这些信号可能代表词嵌入、字符特征或其他预处理后的特征。

  2. 加权和:神经元将接收到的所有信号与对应的权重相乘后求和。例如,在NLP任务中,词嵌入经过矩阵乘法(权重矩阵W)得到一个加权和。

  3. 激活函数:对上述加权和应用非线性激活函数(如ReLU、Sigmoid、Tanh等),生成该神经元的输出值。激活函数引入了模型的非线性特性,使其能够学习并捕获复杂的数据关系。

  4. 传播:神经元的输出随后作为下一层神经元的输入,这一过程不断迭代直至到达输出层,最终用于预测任务目标,如分类标签、情感得分、翻译结果等。

在NLP的各种深度学习模型中,如循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)以及Transformer等,神经元是构成整个模型的基础单元,通过大量神经元的堆叠和连接,模型得以理解和处理复杂的自然语言信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/676693.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 软件管理(YUM RPM)

1 YUM yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器。基于RPM包管理,能够从指定的服务器自动处理依赖性关系,并且一次安装所有依赖的软件包,无须繁琐地一次次…

Aethir和Well-Link Tech携手革新云游戏,释放人工智能(AI)潜力

​Aethir将为Well-Link Tech的2亿用户提供先进的GPU计算能力,大幅提升他们的游戏体验。 新加坡,2024年2月7日 - 先驱性的去中心化GPU网络Aethir与实时云渲染技术领导者Well-Link Tech携手共创云游戏和元宇宙发展的新时代。 借助Well-Link Tech对领先游戏…

[office] Excel2019函数MAXIFS怎么使用?Excel2019函数MAXIFS使用教程 #知识分享#微信#经验分享

Excel2019函数MAXIFS怎么使用?Excel2019函数MAXIFS使用教程 Excel2019函数MAXIFS怎么使用?这篇文章主要介绍了Excel2019函数MAXIFS使用教程,需要的朋友可以参考下 在今年,Excel除了新版本Excel2019,其中有一个新功能MAXIFS函数&am…

初识文件包含漏洞

目录 什么是文件包含漏洞? 文件包含的环境要求 常见的文件包含函数 PHP伪协议 file://协议 php://协议 php://filter php://input zip://、bzip2://、zlib://协议 zip:// bzip2:// zlib:// data://协议 文件包含漏洞演示 案例1:php://inp…

Docker-现代化应用部署的利器

一、容器部署的发展 今天我们来说说容器部署。我们知道容器部署的发展大致分三个阶段,下面来介绍一下不同阶段的部署方式的优缺点 物理机部署 优点是可以提供更高的性能、资源控制,也可以提供更好的数据隔离和安全性,因为不同的应用程序运行在…

从0开始图形学(光栅化)

前言 说起图形学,很多人就会提到OpenGL,但其实两者并不是同一个东西。引入了OpenGL加重了学习的难度和成本,使得一些原理并不直观。可能你知道向量,矩阵,纹理,重心坐标等概念,但就是不知道这些概…

移动端设置position: fixed;固定定位,底部出现一条缝隙,不知原因,欢迎探讨!!!

1、问题 在父盒子中有一个子盒子,父盒子加了固定定位,需要子盒子上下都有要边距,用margin或者padding挤开时,会出现缝隙是子盒子背景颜色的。 测试过了,有些手机型号有,有些没有,微信小程序同移…

vscode +git +gitee 文件管理

文章目录 前言一、gitee是什么?2. Gitee与VScode连接大概步骤 二、在vscode中安装git1.安装git2.安装过程3.安装完后记得重启 三、使用1.新建文件夹first2.vscode 使用 四、连接git1.初始化仓库2.设置git 提交用户和邮箱3.登陆gitee账号新建仓库没有的自己注册一个4…

绕过安全狗

本节我们想要绕过的安全狗版本为v4.023957 ,它是网站安全狗的Apache版。 首先搭建环境。渗透环境选用DVWA漏洞集成环境,下载地址 为http://www.dvwa.co.uk/ 。DVWA是一款集成的渗透测试演练环境,当刚刚入门 并且找不到合适的靶机时&#xff…

视觉开发板—K210自学笔记(二)

视觉开发板—K210 一、开发之前的准备 工欲善其事必先利其器。各位同学先下载下面的手册: 1.Sipeed-Maix-Bit 资料下载:https://dl.sipeed.com/shareURL/MAIX/HDK/Sipeed-Maix-Bit/Maix-Bit_V2.0_with_MEMS_microphone 2.Sipeed-Maix-Bit 规格书下载&…

vue3 之 商城项目—登陆

整体认识 登陆页面的主要功能就是表单校验和登陆登出业务 路由配置 模版 <script setup></script><template><div><header class"login-header"><div class"container m-top-20"><h1 class"logo"&g…

在Ubuntu上部署Stable Video Diffusion动画制作

Stable Diffusion团队推出的开源模型Stable Video Diffusion&#xff0c;支持生成约3秒的视频&#xff0c;分辨率为5761024。通过测试视频展示了其令人瞩目的性能&#xff0c;SVD模型是一个生成图像到视频的扩散模型&#xff0c;通过对静止图像的条件化生成短视频。其特点主要包…

Spring基础 - Spring简单例子引入Spring要点

Spring基础 - Spring简单例子引入Spring要点 设计一个Spring的Hello World 设计一个查询用户的案例的两个需求&#xff0c;来看Spring框架帮我们简化了什么开发工作 pom依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"htt…

无人机图像识别技术研究及应用,无人机AI算法技术理论,无人机飞行控制识别算法详解

在现代科技领域中&#xff0c;无人机技术是一个备受瞩目的领域。随着人们对无人机应用的需求在不断增加&#xff0c;无人机技术也在不断发展和改进。在众多的无人机技术中&#xff0c;无人机图像识别技术是其中之一。 无人机图像识别技术是利用计算机视觉技术对无人机拍摄的图像…

springboot169基于vue的工厂车间管理系统的设计

基于VUE的工厂车间管理系统设计与实现 摘 要 社会发展日新月异&#xff0c;用计算机应用实现数据管理功能已经算是很完善的了&#xff0c;但是随着移动互联网的到来&#xff0c;处理信息不再受制于地理位置的限制&#xff0c;处理信息及时高效&#xff0c;备受人们的喜爱。本…

第7章 智能租房——首页

学习目标 掌握房源总数展示功能&#xff0c;能够实现将统计的房源总数在首页中展示 掌握最新房源数据展示功能&#xff0c;能够实现将查询的最新房源数据在首页中展示 掌握热点房源数据展示功能&#xff0c;能够实现将查询的热点房源数据在首页中展示 了解智能提示搜索框的功…

Apache Paimon 文件操作

本文旨在澄清不同文件操作对文件的影响。 本页面提供具体示例和实用技巧&#xff0c;以有效地管理这些操作。此外&#xff0c;通过对提交&#xff08;commit&#xff09;和压实&#xff08;compact&#xff09;等操作的深入探讨&#xff0c;我们旨在提供有关文件创建和更新的见…

STM32 定时器

目录 TIM 定时器定时中断 定时器外部时钟 PWM驱动LED呼吸灯&#xff08;OC&#xff09; PWM控制舵机 PWMA驱动直流电机 输入捕获模式测频率&#xff08;IC&#xff09; 输入捕获模式测占空比 编码器接口测速(编码器接口) TIM 通用定时器 高级定时器 定时器定时中断 Ti…

springboot项目热部署实现(Spring Boot DevTools方式)

文章目录 Spring Boot DevTools简介Spring Boot DevTools原理spring Boot Devtools优缺点Spring Boot DevTools集成步骤第一步&#xff1a;添加maven依赖第二步&#xff1a;IDEA热部署配置 Spring Boot DevTools简介 Spring Boot DevTools是Spring Boot提供的一个开发工具&…

Vue事件中如何使用 event 对象

在Vue中&#xff0c;事件处理函数常常需要获取事件触发时的相关信息&#xff0c;比如鼠标位置、按键信息等。而要获取这些信息&#xff0c;就需要使用event对象。那么在Vue的事件中如何正确使用event对象呢&#xff1f;接下来就来详细介绍一下。 首先&#xff0c;在Vue的事件中…