1. 使用串口发送5个字节数据到电脑
uart协议规定,发送的数据位只能是6,7,8位,如果数据位不符合,接收者接收不到数据。所以我们需要将40位数据data分为5个字节数据分别发送,那么接收者就能通过uart协议接收到数据了。
2. 第一次使用状态机写设计代码(不够简洁的版本)
为什么要使用状态机:由于在always语句块中,语句是并行执行的,当我想要处理有先后顺序的问题时,就需要用状态机来解决。
针对发送五个字节数据到电脑的目的按,可将状态机的使用分为以下三种情况:
1. 没有开始发送(数据请求trans_go信号没有出现)
2. 数据请求trans_go信号出现
3. 数据请求trans_go信号出现
2.1 设计代码
module uart_tx_data(clk,rstn,trans_go,data40,uart_tx,trans_done
);input clk;input rstn;input trans_go;input [39:0] data40;output uart_tx;output reg trans_done;reg [7:0] data;reg send_go;wire tx_done;uart_byte_tx uart_byte_tx(.clk(clk),.rstn(rstn),.blaud_set(3'd4),.data(data),.send_go(send_go),.uart_tx(uart_tx),.tx_done(tx_done));reg [2:0]state;always@(posedge clk or negedge rstn)if(!rstn) beginstate <= 0;send_go <= 0;data <= 0;trans_done <= 0;end else case(state)0: beginif(trans_go)begintrans_done <= 0;data <= data40[7:0];send_go <= 1;state <= 1;endelse begindata <= data;send_go <= 0;state <= 0;endend1:beginif(tx_done)begindata <= data40[15:8];send_go <= 1;state <= 2;endelse send_go <= 0;end2:beginif(tx_done)begindata <= data40[23:16];send_go <= 1;state <= 3;endelsesend_go <= 0;end3:beginif(tx_done)begindata <= data40[31:24];send_go <= 1;state <= 4;endelsesend_go <= 0;end4:beginif(tx_done)begindata <= data40[39:32];send_go <= 1;state <= 5;endelsesend_go <= 0;end5:beginif(tx_done)begintrans_done <= 1;state <= 0;endelsesend_go <= 0;enddefault: begindata <= data;send_go <= 0;state <= 0;endendcaseendmodule
module uart_byte_tx(clk,rstn,blaud_set,data,send_go,uart_tx,tx_done
);input clk;input rstn;input [2:0]blaud_set;input [7:0]data;input send_go;output reg uart_tx;output tx_done;//Blaud_set = 0时,波特率 = 9600;//Blaud_set = 1时,波特率 = 19200;//Blaud_set = 2时,波特率 = 38400;//Blaud_set = 3时,波特率 = 57600;//Blaud_set = 4时,波特率 = 115200;reg[17:0] bps_dr;always@(*)case(blaud_set)0: bps_dr = 1000000000/9600/20;1: bps_dr = 1000000000/19200/20;2: bps_dr = 1000000000/38400/20;3: bps_dr = 1000000000/57600/20;4: bps_dr = 1000000000/115200/20;endcasereg [7:0] r_data;always@(posedge clk)if(send_go)r_data <= data;elser_data <= r_data;reg send_en; always@(posedge clk or negedge rstn)if(!rstn)send_en <= 0;else if(send_go)send_en <= 1;else if(tx_done)send_en <= 0;wire bps_clk;assign bps_clk = (div_cnt == 1);reg[17:0] div_cnt;always@(posedge clk or negedge rstn)if(!rstn)div_cnt <= 0;else if(send_en)beginif(div_cnt == (bps_dr - 1))div_cnt <= 0;elsediv_cnt <= div_cnt + 1'd1;endelsediv_cnt <= 0; reg[3:0] bps_cnt; always@(posedge clk or negedge rstn)if(!rstn)bps_cnt <= 0;else if(send_en)beginif(bps_cnt == 11)bps_cnt <= 0;else if(div_cnt == 1)bps_cnt <= bps_cnt + 4'd1;endelsebps_cnt <= 0;reg tx_done;always@(posedge clk or negedge rstn)if(!rstn)uart_tx <= 1'd1;else case(bps_cnt)0: tx_done <= 0;1: uart_tx <= 1'd0;2: uart_tx <= r_data[0];3: uart_tx <= r_data[1];4: uart_tx <= r_data[2];5: uart_tx <= r_data[3];6: uart_tx <= r_data[4];7: uart_tx <= r_data[5];8: uart_tx <= r_data[6];9: uart_tx <= r_data[7];10: uart_tx <= 1'd1;11: begin uart_tx <= 1'd1; tx_done <= 1; enddefault: uart_tx <= 1'd1;endcaseendmodule
2.2 仿真代码(学习trans_go脉冲信号以及数据发送完成信号)
以下两点需要学习:
- 通过控制trans_go信号的产生与结束,来模拟一个周期的脉冲信号
- 通过增加一个输出端口tx_done,来通知我输出何时完成
`timescale 1ns / 1psmodule uart_tx_data_tb();reg clk;reg rstn;reg trans_go;reg [39:0]data40;wire trans_done;wire uart_tx;uart_tx_data uart_tx_data_inst(.clk(clk),.rstn(rstn),.trans_go(trans_go),.data40(data40),.trans_done(trans_done),.uart_tx(uart_tx));initial clk = 1;always #10 clk = ~clk;initial beginrstn = 0;trans_go = 0;data40 = 0;#201;rstn = 1;#200;data40 = 40'h123456789a;trans_go = 1; //trans_go脉冲信号的模拟#20;trans_go = 0; //trans_go脉冲信号的模拟@(posedge trans_done) //数据发送完成信号的标识#200000;data40 = 40'ha987654321;trans_go = 1;#20;trans_go = 0;@(posedge trans_done)#200000;$stop;endendmodule
仿真波形
3. 优化状态机代码
1. 任务:优化状态机,实现只要个或3个状态实现发送的功能,并且易于修改为发送任意个字节的数据
2. 征集不使用状态机的思想来实现本任务的方案
任务1完成如下,对于任务2,我的思路是:由于fpga是并行发送数据的,如果我们想要多字节发送数据的话,肯定需要将多字节串起来发送,所以我们可以将五个字节的数据串起来,每个字节之间相隔起始位和结束位,以此来达到在遵循协议的情况下实现多字节的输出。
3.1 设计代码(三个状态):
三个状态:
状态1.等待发送请求
状态2.等待单字节数据发送完成
状态3.检查所有数据是否发送完成
module uart_tx_data1(clk,rstn,trans_go,data40,uart_tx,trans_done
);input clk;input rstn;input trans_go;input [39:0] data40;output uart_tx;output reg trans_done;reg [7:0] data;reg send_go;wire tx_done;uart_byte_tx uart_byte_tx(.clk(clk),.rstn(rstn),.blaud_set(3'd4),.data(data),.send_go(send_go),.uart_tx(uart_tx),.tx_done(tx_done));reg [2:0]state;reg [2:0]counter;always@(posedge clk or negedge rstn)if(!rstn) beginstate <= 0;send_go <= 0;data <= 0;trans_done <= 0;counter <= 0;end else case(state)0:begin //等待发送请求if(trans_go)begin trans_done <= 0;send_go <= 1;data <= (data40>>8*counter);state <= 1;endelse begin data <= data;send_go <= 0;state <= 0;endend1:begin //等待单字节数据发送完成if(tx_done)begincounter <= counter + 1'd1;state <= 2;endelse send_go <= 0;end2:begin //检查所有数据是否发送完成if(counter == 5) begintrans_done <= 1;state <= 0;counter <= 0;endelse beginsend_go <= 1;data <= (data40>>(8*counter));state <= 1;endenddefault: begindata <= data;send_go <= 0;state <= 0;endendcaseendmodule
module uart_byte_tx(clk,rstn,blaud_set,data,send_go,uart_tx,tx_done
);input clk;input rstn;input [2:0]blaud_set;input [7:0]data;input send_go;output reg uart_tx;output tx_done;//Blaud_set = 0时,波特率 = 9600;//Blaud_set = 1时,波特率 = 19200;//Blaud_set = 2时,波特率 = 38400;//Blaud_set = 3时,波特率 = 57600;//Blaud_set = 4时,波特率 = 115200;reg[17:0] bps_dr;always@(*)case(blaud_set)0: bps_dr = 1000000000/9600/20;1: bps_dr = 1000000000/19200/20;2: bps_dr = 1000000000/38400/20;3: bps_dr = 1000000000/57600/20;4: bps_dr = 1000000000/115200/20;endcasereg [7:0] r_data;always@(posedge clk)if(send_go)r_data <= data;elser_data <= r_data;reg send_en; always@(posedge clk or negedge rstn)if(!rstn)send_en <= 0;else if(send_go)send_en <= 1;else if(tx_done)send_en <= 0;wire bps_clk;assign bps_clk = (div_cnt == 1);reg[17:0] div_cnt;always@(posedge clk or negedge rstn)if(!rstn)div_cnt <= 0;else if(send_en)beginif(div_cnt == (bps_dr - 1))div_cnt <= 0;elsediv_cnt <= div_cnt + 1'd1;endelsediv_cnt <= 0; reg[3:0] bps_cnt; always@(posedge clk or negedge rstn)if(!rstn)bps_cnt <= 0;else if(send_en)beginif(bps_cnt == 11)bps_cnt <= 0;else if(div_cnt == 1)bps_cnt <= bps_cnt + 4'd1;endelsebps_cnt <= 0;reg tx_done;always@(posedge clk or negedge rstn)if(!rstn)uart_tx <= 1'd1;else case(bps_cnt)0: tx_done <= 0;1: uart_tx <= 1'd0;2: uart_tx <= r_data[0];3: uart_tx <= r_data[1];4: uart_tx <= r_data[2];5: uart_tx <= r_data[3];6: uart_tx <= r_data[4];7: uart_tx <= r_data[5];8: uart_tx <= r_data[6];9: uart_tx <= r_data[7];10: uart_tx <= 1'd1;11: begin uart_tx <= 1'd1; tx_done <= 1; enddefault: uart_tx <= 1'd1;endcaseendmodule
仿真代码
`timescale 1ns / 1psmodule uart_tx_data1_tb();reg clk;reg rstn;reg trans_go;reg [39:0]data40;wire trans_done;wire uart_tx;uart_tx_data1 uart_tx_data_inst1(.clk(clk),.rstn(rstn),.trans_go(trans_go),.data40(data40),.trans_done(trans_done),.uart_tx(uart_tx));initial clk = 1;always #10 clk = ~clk;initial beginrstn = 0;trans_go = 0;data40 = 0;#201;rstn = 1;#200;data40 = 40'h123456789a;trans_go = 1;#20;trans_go = 0;@(posedge trans_done);#200000;data40 = 40'ha987654321;trans_go = 1;#20;trans_go = 0;@(posedge trans_done);#200000;$stop;endendmodule
仿真波形
3.2 调试
调试1:counter位宽给错了,counter要记到5,但是只给了[1:0]两位:
调试2:counter记到5后未清零,导致数据多发了三次,且由于data = data40>>8*counter,导致数据为00: