机器学习系列——(十一)回归

引言

在机器学习领域,回归是一种常见的监督学习任务,它主要用于预测数值型目标变量。回归分析能够通过对输入特征与目标变量之间的关系建模,从而对未知数据做出预测。

概念

回归是机器学习中的一种监督学习方法,用于预测数值型目标变量。它通过建立特征与目标变量之间的关系模型,对未知数据做出预测。

举个例子来说明回归的概念:

假设我们希望根据房屋的面积来预测其价格。我们可以收集一组包含多个房屋的数据样本,每个样本包含房屋的面积和对应的价格。这些数据样本就构成了我们的训练集。

回归模型的目标是找到一个函数来描述输入特征(房屋的面积)与目标变量(价格)之间的关系。在简单线性回归中,我们假设房屋的价格与面积之间存在着线性关系,即价格可以用面积来预测。我们可以使用最小二乘法来拟合一条直线,使得该直线与所有样本点的误差最小化。

通过得到回归模型,我们可以对未知的房屋面积进行预测。例如,如果有一座新的房屋,我们知道它的面积是100平方米,那么通过回归模型,我们可以预测其价格为150万元。

需要注意的是,回归并不仅限于简单的直线拟合,我们还可以使用多项式回归来描述非线性关系,或者使用其他更复杂的回归算法进行建模。回归模型在许多领域都有广泛的应用,如金融预测、销售预测、医学研究等。它能够帮助我们理解变量之间的关系,并进行准确的数值预测。

常见的回归算法:

  1. 线性回归(Linear Regression): 线性回归是一种基本且常用的回归算法。它通过拟合一个线性模型来描述特征与目标变量之间的关系。线性回归假设输入特征与目标变量之间存在线性关系,并使用最小二乘法来估计模型参数。线性回归易于实现和解释,但对于非线性关系的数据拟合效果较差。

  2. 多项式回归(Polynomial Regression): 多项式回归是在线性回归的基础上引入多项式特征的一种扩展形式。通过将特征进行多项式转换,可以更好地拟合复杂的非线性关系。多项式回归能够提高模型的灵活性,但在高维度的情况下容易发生过拟合。

  3. 岭回归(Ridge Regression): 岭回归是一种正则化线性回归算法,通过加入L2正则化项来缩减模型参数的大小。L2正则化能够有效地减小模型的方差,降低过拟合的风险。岭回归适用于特征之间存在共线性的情况,可以提高模型的泛化能力。

  4. Lasso回归(Lasso Regression): Lasso回归是一种使用L1正则化的线性回归算法。与岭回归不同,Lasso回归能够将某些模型参数压缩为零,实现特征选择的效果。L1正则化具有稀疏性,因此Lasso回归常被用于特征选择和模型简化。

  5. 决策树回归(Decision Tree Regression): 决策树回归是一种非参数化的回归算法,它将输入空间划分为多个区域,并在每个区域内拟合一个局部模型。决策树回归适用于复杂的非线性关系,并且能够处理离散型和连续型特征。然而,决策树容易产生过拟合,因此常常需要剪枝等策略来提高泛化性能。

  6. 随机森林回归(Random Forest Regression): 随机森林回归是基于决策树的集成学习方法,通过随机选择特征和样本来构建多个决策树。随机森林回归具有较强的鲁棒性和泛化能力,能够应对高维度数据和噪声。此外,它还可以评估特征的重要性,用于特征选择和解释模型。

  7. 支持向量回归(Support Vector Regression, SVR): 支持向量回归是一种使用支持向量机(SVM)技术进行回归分析的方法。SVR通过将目标变量与一条超平面之间的间隔最大化来拟合模型。SVR适用于非线性关系和高维度数据,并具有较好的泛化性能。然而,SVR对参数的选择敏感,需要进行调优。

总结

本篇博客简单介绍了回归的概念和几种常见的回归算法,包括线性回归、多项式回归、岭回归、Lasso回归、决策树回归、随机森林回归和支持向量回归。每种算法都有其特点和适用范围,可以根据具体问题选择合适的回归算法进行建模和预测。在实际应用中,还可以结合特征工程、模型评估和调参等技巧进一步优化回归模型的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/676168.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

yo!这里是Linux线程保姆级入门介绍

目录 前言 Linux线程基础 线程概念 底层示意图 线程vs进程 Linux线程控制 创建线程 线程ID 线程终止 线程等待 线程分离 Linux线程互斥 背景概念 互斥量mutex 1.相关接口 2.实现原理 可重入vs线程安全 死锁 Linux线程同步 条件变量 生产者消费者模型 基于…

MacOS 查AirPods 电量技巧:可实现低电量提醒、自动弹窗

要怎么透过macOS 来查询AirPods 电量呢?当AirPods 和Mac 配对后,有的朋友想通过Mac来查询AirPods有多少电量,这个里有几个技巧,下面我们来介绍一下。 透过Mac 查AirPods 电量技巧 技巧1. 利用状态列上音量功能查询 如要使用此功能…

FastJson、Jackson使用AOP切面进行日志打印异常

FastJson、Jackson使用AOP切面进行日志打印异常 一、概述 1、问题详情 使用FastJson、Jackson进行日志打印时分别包如下错误: 源码: //fastjon log.info("\nRequest Info :{} \n", JSON.toJSONString(requestInfo)); //jackson …

人力资源智能化管理项目(day04:组织架构)

学习源码可以看我的个人前端学习笔记 (github.com):qdxzw/humanResourceIntelligentManagementProject 觉得有帮助的同学&#xff0c;可以点心心支持一下哈 树组件应用 <!-- 展示树形结构 --><!-- default-expand-all默认展开所有节点 --><el-tree default-ex…

CTFshow web(命令执行 41-44)

web41 <?php /* # -*- coding: utf-8 -*- # Author: 羽 # Date: 2020-09-05 20:31:22 # Last Modified by: h1xa # Last Modified time: 2020-09-05 22:40:07 # email: 1341963450qq.com # link: https://ctf.show */ if(isset($_POST[c])){ $c $_POST[c]; if(!p…

Intellij Idea的数据库工具 DataGrip

DataGrip DataGrip&#xff1a; IDEA自带&#xff0c;非常好用。智能提示很强大&#xff0c;快捷键跟IDEA自身一致。 如果下载不了 DataGrip&#xff0c;也可以直接用 IDEA 自带的。 常用的快捷键 alt8&#xff1a; 打开数据库Service ctrlshiftF10&#xff1a;打开常用的数…

【C++】类的6个默认成员函数

目录 1. 类的6个默认成员函数 2. 构造函数 3. 析构函数 4. 拷贝构造函数 5. 运算符重载 5.1运算符重载 5.2赋值运算符重载 5.3前置和后置重载 5.4日期类的实现 6. const成员函数 7. 取地址及const取地址操作符重载 1. 类的6个默认成员函数 对于一个空类&#xff0c;编…

JSDoc 真能取代 TypeScript?

这几个月&#xff0c;想必大家都听到过一个新闻&#xff1a; Svelte 弃用 TypeScript&#xff0c;改用 JSDoc 了。 TypeScript 我们知道&#xff0c;是用来给 JS 加上类型的&#xff0c;可以实现类型提示和编译时的类型检查。 那 JSDoc 能够完成一样的功能么&#xff1f;Svel…

图像处理常用算法—6个算子 !!

目录 前言 1、Sobel 算子 2、Isotropic Sobel 算子 3、Roberts 算子 4、Prewitt 算子 5、Laplacian算子 6、Canny算子 前言 同图像灰度不同&#xff0c;边界处一般会有明显的边缘&#xff0c;利用此特征可以分割图像。 需要说明的是&#xff1a;边缘和物体间的边界并不…

Android应用图标微技巧,8.0系统中应用图标的适配

大家好,2018年的第一篇文章到的稍微有点迟,也是因为在上一个Glide系列结束之后一直还没想到什么好的新题材。 现在已经进入了2018年,Android 8.0系统也逐渐开始普及起来了。三星今年推出的最新旗舰机Galaxy S9已经搭载了Android 8.0系统,紧接着小米、华为、OV等国产手机厂…

一句话总结Docker与K8S的关系

一句话总结&#xff1a;Docker只是容器的一种&#xff0c;它面向的是单体&#xff0c;K8S可以管理多种容器&#xff0c;它面向的是集群&#xff0c;Docker可以作为一种容器方案被K8S管理。下文继续具体介绍。 1、容器的核心概念 介绍这几个核心概念&#xff1a;OCI、CR、Runc、…

C语言指针运算

指针运算 指针加法意味着地址向上移动若干个目标指针减法意味着地址向下移动若干个目标示例&#xff1a; int a 100; int *p &a; // 指针 p 指向整型变量 aint *k1 p 2; // 向上移动 2 个目标&#xff08;2个int型数据&#xff09; int *k2 p - 3; // 向下移动 3 个…

PWM输入输出

PWM&#xff08;Pulse Width Modulation&#xff09;即脉冲宽度调制&#xff0c;在具有惯性的系统中&#xff0c;可以通过对一系列脉冲的宽度进行制&#xff0c;来等效地获得所需要的模拟参量&#xff0c;常应用于电机控速、开关电源等领域。 PWM参数 PWM 中有三个重要参数&…

寒假作业-day7

1>现有文件test.c\test1.c\main.c , 请编写Makefile. 代码&#xff1a; CCgcc EXEstr OBJS$(patsubst %.c,%.o,$(wildcard *.c)) CFLAGS-c -oall:$(EXE)$(EXE):$(OBJS)$(CC) $^ -o $%.o:%.c$(CC) $(CFLAGS) $ $^head.o:head.hclean:rm $(OBJS) $(EXE) 2>C编程实现&…

封装sku组件

1. 准备模板渲染规格数据 使用Vite快速创建一个Vue项目&#xff0c;在项目中添加请求插件axios&#xff0c;然后新增一个SKU组件&#xff0c;在根组件中把它渲染出来&#xff0c;下面是规格内容的基础模板 <script setup> import { onMounted, ref } from vue import axi…

NOVATEK显示技术系列之CEDSCHPI Training差异简介

CEDS的数据封包格式&#xff1a;首先CEDS数据封包包括三个部分&#xff1a; Training Pattern即Phase1Control Data 即 Phase2RGB Data 即Phase3 Power on Timing&#xff1a; 工作原理&#xff1a; Power ON时&#xff0c;TCON会发Training Pattern&#xff0c;当COF接受Tr…

江科大STM32 终

目录 SPI协议10.1 SPI简介W25Q64简介10.3 SPI软件读写W25Q6410.4 SPI硬件外设读写W25Q64 BKP备份寄存器、PER电源控制器、RTC实时时钟11.0 Unix时间戳代码示例&#xff1a;读写备份寄存器BKP11.2 RTC实时时钟 十二、PWR电源控制12.1 PWR简介代码示例&#xff1a;修改主频12.3 串…

分享90个行业PPT,总有一款适合您

分享90个行业PPT&#xff0c;总有一款适合您 90个行业PPT下载链接&#xff1a;https://pan.baidu.com/s/1bHvhk_42-IFAjNdjPPtMZw?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不易…

106. 从中序与后序遍历序列构造二叉树 - 力扣(LeetCode)

题目描述 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 题目示例 输入&#xff1a;inorder [9,3,15,20,7], postorder [9,15,7,20,3] 输出&a…

B2078 含 k 个 3 的数(洛谷)

题目描述 输入两个正整数 m 和 k&#xff0c;其中 1<m≤&#xff0c;1<k≤15 &#xff0c;判断 m 是否恰好含有 k 个 3&#xff0c;如果满足条件&#xff0c;则输出 YES&#xff0c;否则&#xff0c;输出 NO。 输入格式 输入一行&#xff0c;为两个整数 m,k&#xff0…