STL之list容器的介绍与模拟实现+适配器

STL之list容器的介绍与模拟实现+适配器

  • 1. list的介绍
  • 2. list容器的使用
    • 2.1 list的定义
    • 2.2 list iterator的使用
    • 2.3 list capacity
    • 2.4 list element access
    • 2.5 list modifiers
    • 2.6 list的迭代器失效
  • 3. list的模拟实现
    • 3.1 架构搭建
    • 3.2 迭代器
      • 3.2.1 正向迭代器
      • 3.2.2反向迭代器+适配器
    • 3.3 空间控制模块
    • 3.4 数据的访问
    • 3.5 增加/删除数据
    • 3.6 构造/拷贝构造/析构
  • 4. 整体代码逻辑

所属专栏:C“嘎嘎" 系统学习❤️
🚀 >博主首页:初阳785❤️
🚀 >代码托管:chuyang785❤️
🚀 >感谢大家的支持,您的点赞和关注是对我最大的支持!!!❤️
🚀 >博主也会更加的努力,创作出更优质的博文!!❤️

1. list的介绍

list的文档介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向
    其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list
    的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间
    开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这
    可能是一个重要的因素)

2. list容器的使用

2.1 list的定义

构造函数( (constructor))接口说明
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list

2.2 list iterator的使用

函数声明接口说明
begin +end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin +rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置

【注意】

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

2.3 list capacity

函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数

2.4 list element access

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

2.5 list modifiers

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

2.6 list的迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节
点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代
器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

void TestListIterator1()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值l.erase(it);++it;}
}// 改正
void TestListIterator()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){it = l.erase(it);}
}

3. list的模拟实现

3.1 架构搭建

  • 首先,list容器的底层实现是一个双向循环链表。所以在实现本章节的前提下,我们首先要熟知我们学习C语言的时候是怎么实现一个带头双向循环链表的。核心的逻辑思维是一模一样的。
  • 所以在实现的前提下,我们可以先从C语言数据结构着手起步。
  • 整体的构架就是:1. 要有一个节点的类,里面包含了两个指针next和prev,和一个存放数据的变量val。2. 就是构建list类,在类里面进行一些类的操作。
  template<class T>struct ListNode{ListNode(const T& val = T()):_pPre(nullptr),_pNext(nullptr),_val(val){}ListNode<T>* _pPre;ListNode<T>* _pNext;T _val;};//list类template<class T>class list{typedef ListNode<T> Node;//typedef Node* PNode;public://正向迭代器typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T*> const_iterator;//反向迭代器typedef Reverse_iterator<iterator, T&, T*> reverse_iterator;typedef Reverse_iterator<const_iterator, const T&, const T*> const_reverse_iterator;public:///// List的构造list(){……}//拷贝构造list(const list<T>& l){……}~list(){……}
//………………private://创建新节点void CreateHead(){_pHead = new Node;_pHead->_pPre = _pHead;_pHead->_pNext = _pHead;}Node* _pHead;
}

3.2 迭代器

同样提供两个版本const 和 非const版本的。

  • 但是这里要注意一点就是,我们的迭代器在进行移动的时候无非就是++/–操作,但是我们可由直接进行(iterator)a++吗?如果这是个内置类型的话那自然是可以的。但是组成list容器并非是内置类型,而是自定义类型,每个节点都是一个类,而自定义类型是无法直接进行++/–等一些类的运算符操作的。要想对自定义类型进行运算符操作就必须要使用运算符重载函数。所以为了可以对迭代器进行运算符操作就也要定义一个迭代器类,并在类中包含要进行操作的自定义类型的对象,在类中进行运算符操作。

3.2.1 正向迭代器

template<class T, class Ref, class Ptr>
class ListIterator
{
public:typedef ListNode<T> PNode;typedef ListIterator<T, Ref, Ptr> Self; PNode* _pNode;ListIterator(PNode* pNode = nullptr):_pNode(pNode){}//ListIterator(const Self& l);Ref operator*(){return _pNode->_val;}Ptr operator->(){return &_pNode->_val;}Self& operator++(){_pNode = _pNode->_pNext;return *this;}Self operator++(int){Self tmp(*this);//拷贝构造(浅拷贝)_pNode = _pNode->_pNext;return tmp;}Self& operator--(){_pNode = _pNode->_pPre;return *this;}Self& operator--(int){Self tmp(*this);_pNode = _pNode->_pPre;return tmp;}bool operator!=(const Self& l){return _pNode != l._pNode;}bool operator==(const Self& l){return _pNode == l._pNode;}
};
  • 注:这里我们可以看到我们创建ListIterator类的时候使用了类模板,并且看到模板参数中不止一个参数,而是多了两个Ref和Ptr。至于理由是:我们要实现两个版本的迭代器,一个是const和非const版本的,而这两个版本的区别无非就是返回的引用值是否能被修改该,也就是重载*解引用的时候,const版本返回的是const T&,非const版本返回的就是T&,除了这个其他的地方都一样。那如果想两个都实现是不是就要copy一份呢?一下写两个出来呢?所以这个时候模板参数起作用了。定义Ref模板参数,不管是T&还是const T&我们都返回Ref只是当我们想调用const版本的时候就给模板传const T&的类型,我们想调用非cosnt版本的时候就传T&类型的给模板就行,这样就可以避免代码重复问题,提高复用度。
  • 同样的既然我们定义是一个自定义类型的节点,迭代器可以看作是一个指针,有了自定义类型和之指针我们就可以通过指针+ (->)的方式拿到节点里面的val值,但是->同样也有两个版本,所以做法和上面的是一样的,只需要多个模板参数传一个值Ptr就行,具体调用什么版本的就传什么类型的过去就行。
  • 这里同样也要注意的一点就是重载(->)的时候,我们是这样定义的:
    Ptr operator->() { return &_pNode->_val; }
    本来我们使用的时候应该it->->val这样有两个箭头使用,也就是it.operator->()->val这样去使用的,但是编译为了方便使用做了优化只需要一个箭头就可进行访问了。

3.2.2反向迭代器+适配器

适配器:
适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总
结),该种模式是将一个类的接口转换成客户希望的另外一个接口
在这里插入图片描述
用简单话来概括适配器就是——用现有的东西适配出一个新的东西。

我们的反向迭代器其实就是用到了适配器的概念,用到就是正向迭代器适配出来的。
在这里插入图片描述

  • rbegin的++就是end的–,rend的–就是begin的++,要取rbegin指向的值就是–end()在解引用得到。
    所以我们只需要讲正向迭代器的类型当作参数传个我们的反向迭代器的类模板参数就行。
  • 同样的这里也需要传三个模板参数,原理和上面是一样的。
template<class Iterator, class Pef, class Ptr>
struct Reverse_iterator
{typedef Reverse_iterator<Iterator, Pef, Ptr> self;Iterator cur;Reverse_iterator(Iterator it):cur(it){}Ptr operator->(){return &(operator*());}self& operator++(){--cur;return *this;}self operator++(int){Iterator tmp = cur;--cur;return tmp;}self& operator--(){++cur;return *this;}self operator--(int){Iterator tmp = cur;++cur;return tmp;}Pef operator*(){Iterator tmp = cur;--tmp;return *tmp;}bool operator!=(const self& l){return cur != l.cur;}bool operator==(const self& l){return cur == l.cur;}
};

3.3 空间控制模块

  1. 返回list容器的大小
size_t size() const
{size_t len = 0;const_iterator it = begin();//这里要用const_iterator迭代器,this被const修饰了while (it != end()){++len;++it;}return len;
}
  1. list容器是否为空
bool empty()const
{return begin() == end();
}
  1. resize
void resize(size_t newsize, const T& data = T())
{size_t oldsize = size();if (newsize <= oldsize){// 有效元素个数减少到newsizewhile (newsize < oldsize){pop_back();oldsize--;}}else{while (oldsize < newsize){push_back(data);oldsize++;}}
}

3.4 数据的访问

  1. 访问头节点的值
T& front()
{return (begin()._pNode)->_pNext->_val;
}
const T& front()const
{return (begin()._pNode)->_pNext->_val;}
  1. 访问尾节点的值
T& back()
{return (end()._pNode)->_pPre->_val;
}
const T& back()const
{return (end()._pNode)->_pPre->_val;
}

3.5 增加/删除数据

  1. 在pos位置前插入值为val的节点
iterator insert(iterator pos, const T& val)
{Node* newnode = new Node;newnode->_val = val;Node* cur = pos._pNode;Node* prev = cur->_pPre;prev->_pNext = newnode;newnode->_pPre = prev;newnode->_pNext = cur;cur->_pPre = newnode;return iterator(newnode);
}
  1. 删除pos位置的节点,返回该节点的下一个位置
iterator erase(iterator pos){Node* cur = pos._pNode;Node* prev = cur->_pPre;Node* next = cur->_pNext;prev->_pNext = next;next->_pPre = prev;return iterator(next);}
  1. push_back/pop_back
void push_back(const T& val) 
{insert(end(), val); 
}
void pop_back() 
{ erase(--end()); 
}
  1. push_front/pop_front
void push_front(const T& val) 
{ insert(begin(), val); 
}
void pop_front() 
{ erase(begin()); 
}
  1. 清除数据
void clear()
{iterator it = begin();while (it != end()){it = erase(it);}
}

3.6 构造/拷贝构造/析构

  1. 构造函数
list()
{CreateHead();
}list(int n, const T& value = T())
{CreateHead();//先创建哨兵位for (int i = 0; i < n; i++){push_back(value);}
}template <class Iterator>
list(Iterator first, Iterator last)
{CreateHead();//先创建哨兵位while (first != last){push_back(*first);++first;}
}
  1. 拷贝构造
list(const list<T>& l)
{CreateHead();//先创建哨兵位const_iterator it = l.begin();while (it != l.end()){push_back(*it);++it;}
}
  1. 赋值运算符重载
void swap(list<T>& l)
{std::swap(_pHead, l._pHead);
}list<T>& operator=(list<T> l) 
{swap(l);return *this;
}
  1. 析构
~list()
{//iterator it = begin();//while (it != end())//{//    Node* cur = it._pNode;//    _pHead->_pNext = cur->_pNext;//    delete cur;//}clear();delete _pHead;_pHead = nullptr;
}

4. 整体代码逻辑

namespace qfw
{// List的节点类template<class T>struct ListNode{ListNode(const T& val = T()):_pPre(nullptr),_pNext(nullptr),_val(val){}ListNode<T>* _pPre;ListNode<T>* _pNext;T _val;};//List的迭代器类template<class T, class Ref, class Ptr>class ListIterator{public:typedef ListNode<T> PNode;typedef ListIterator<T, Ref, Ptr> Self; PNode* _pNode;ListIterator(PNode* pNode = nullptr):_pNode(pNode){}//ListIterator(const Self& l);Ref operator*(){return _pNode->_val;}Ptr operator->(){return &_pNode->_val;}Self& operator++(){_pNode = _pNode->_pNext;return *this;}Self operator++(int){Self tmp(*this);//拷贝构造(浅拷贝)_pNode = _pNode->_pNext;return tmp;}Self& operator--(){_pNode = _pNode->_pPre;return *this;}Self& operator--(int){Self tmp(*this);_pNode = _pNode->_pPre;return tmp;}bool operator!=(const Self& l){return _pNode != l._pNode;}bool operator==(const Self& l){return _pNode == l._pNode;}};template<class Iterator, class Pef, class Ptr>struct Reverse_iterator{typedef Reverse_iterator<Iterator, Pef, Ptr> self;Iterator cur;Reverse_iterator(Iterator it):cur(it){}Ptr operator->(){return &(operator*());}self& operator++(){--cur;return *this;}self operator++(int){Iterator tmp = cur;--cur;return tmp;}self& operator--(){++cur;return *this;}self operator--(int){Iterator tmp = cur;++cur;return tmp;}Pef operator*(){Iterator tmp = cur;--tmp;return *tmp;}bool operator!=(const self& l){return cur != l.cur;}bool operator==(const self& l){return cur == l.cur;}};//list类template<class T>class list{typedef ListNode<T> Node;//typedef Node* PNode;public://正向迭代器typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T*> const_iterator;//反向迭代器typedef Reverse_iterator<iterator, T&, T*> reverse_iterator;typedef Reverse_iterator<const_iterator, const T&, const T*> const_reverse_iterator;public:///// List的构造list(){CreateHead();}list(int n, const T& value = T()){CreateHead();//先创建哨兵位for (int i = 0; i < n; i++){push_back(value);}}template <class Iterator>list(Iterator first, Iterator last){CreateHead();//先创建哨兵位while (first != last){push_back(*first);++first;}}//拷贝构造list(const list<T>& l){CreateHead();//先创建哨兵位const_iterator it = l.begin();while (it != l.end()){push_back(*it);++it;}}void swap(list<T>& l){std::swap(_pHead, l._pHead);}list<T>& operator=(list<T> l) {swap(l);return *this;}~list(){//iterator it = begin();//while (it != end())//{//    Node* cur = it._pNode;//    _pHead->_pNext = cur->_pNext;//    delete cur;//}clear();delete _pHead;_pHead = nullptr;}///// List Iteratoriterator begin(){return iterator(_pHead->_pNext);}iterator end(){return iterator(_pHead);}const_iterator begin() const{return const_iterator(_pHead->_pNext);}const_iterator end() const{return const_iterator(_pHead);}reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}const_reverse_iterator rbegin() const{return const_reverse_iterator(end());}const_reverse_iterator rend() const{return const_reverse_iterator(begin());}///// List Capacitysize_t size() const{size_t len = 0;const_iterator it = begin();//这里要用const_iterator迭代器,this被const修饰了while (it != end()){++len;++it;}return len;}bool empty()const{return begin() == end();}void resize(size_t newsize, const T& data = T()){size_t oldsize = size();if (newsize <= oldsize){// 有效元素个数减少到newsizewhile (newsize < oldsize){pop_back();oldsize--;}}else{while (oldsize < newsize){push_back(data);oldsize++;}}}// List AccessT& front(){return (begin()._pNode)->_pNext->_val;}const T& front()const{return (begin()._pNode)->_pNext->_val;}T& back(){return (end()._pNode)->_pPre->_val;}const T& back()const{return (end()._pNode)->_pPre->_val;}// List Modifyvoid push_back(const T& val) {insert(end(), val); }void pop_back() { erase(--end()); }void push_front(const T& val) { insert(begin(), val); }void pop_front() { erase(begin()); }// 在pos位置前插入值为val的节点iterator insert(iterator pos, const T& val){Node* newnode = new Node;newnode->_val = val;Node* cur = pos._pNode;Node* prev = cur->_pPre;prev->_pNext = newnode;newnode->_pPre = prev;newnode->_pNext = cur;cur->_pPre = newnode;return iterator(newnode);}// 删除pos位置的节点,返回该节点的下一个位置iterator erase(iterator pos){Node* cur = pos._pNode;Node* prev = cur->_pPre;Node* next = cur->_pNext;prev->_pNext = next;next->_pPre = prev;return iterator(next);}void clear(){iterator it = begin();while (it != end()){it = erase(it);}}private:void CreateHead(){_pHead = new Node;_pHead->_pPre = _pHead;_pHead->_pNext = _pHead;}Node* _pHead;};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/675845.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python常见的免杀方式

10.1节介绍了通过msfvenom生成shellcode &#xff0c;并通过Python程序加载执行&#xff0c;又 介绍了如何将Python的.py文件生成为exe文件。使用pyinstaller生成的可执行文件 本身就具有一定的免杀能力&#xff0c;但是在与杀毒软件对抗时&#xff0c;部分杀毒软件也可以通 过…

06 MP之自动填充+SQL执行的语句和速度分析

1. 自动填充 在项目中有一些属性&#xff0c;比如常见的创建时间和更新时间可以设置为自动填充。 1.1 实例 需求: 将创建时间和更新时间设置为自动填充, 这样每次插入数据时可以不用理会这两个字段 1.1.1 在数据库增加字段 默认开启驼峰映射 createTime --> create_time…

Spring Boot 笔记 004 自动配置和自定义starter

003讲到了导入jar包中的方法&#xff0c;但其实是个半成品&#xff0c;别人写的jar包中的方法我要在自己的代码中去调用&#xff0c;非常的不方便。原则上写给别人用的jar包&#xff0c;人家要能直接用&#xff0c;而不用写注入的方法。 在springboot中会自动扫描imports文件中…

[Python] 深入理解列表和元组

在学习的C语言中有数组可以用来存储数据&#xff0c;那么在Python中是否也有这样的工具呢&#xff1f;接下来让可莉来给大家讲解列表和元组这两个强力工具吧~ 专栏&#xff1a;《Python》 blog&#xff1a;Keven ’ s blog 在 Python 中&#xff0c;列表和元组是两种常用的序列…

Linux操作系统基础(三):虚拟机与Linux系统安装

文章目录 虚拟机与Linux系统安装 一、系统的安装方式 二、虚拟机概念 三、虚拟机的安装 四、Linux系统安装 1、解压人工智能虚拟机 2、找到解压目录中的node1.vmx 3、启动操作系统 虚拟机与Linux系统安装 一、系统的安装方式 Linux操作系统也有两种安装方式&#xf…

【Linux系统学习】3.Linux用户和权限

Linux用户和权限 1.认知root用户 1.1 root用户&#xff08;超级管理员&#xff09; 无论是Windows、MacOS、Linux均采用多用户的管理模式进行权限管理。 在Linux系统中&#xff0c;拥有最大权限的账户名为&#xff1a;root&#xff08;超级管理员&#xff09; 而在前期&#…

代码随想录 Leetcode55. 跳跃游戏

题目&#xff1a; 代码(首刷自解 2024年2月9日&#xff09;&#xff1a; class Solution { public:bool canJump(vector<int>& nums) {int noz 0;for (int i nums.size() - 2; i > 0; --i) {if (nums[i] 0) {noz;continue;} else {if (nums[i] > noz) noz …

基于LightGBM的回归任务案例

在本文中&#xff0c;我们将学习先进的机器学习模型之一&#xff1a;Lightgbm。在对XGB模型进行了越来越多的改进以获得更好的性能之后&#xff0c;XGBoost是一种极限梯度提升机器&#xff0c;但通过lightgbm&#xff0c;我们可以在没有太多计算的情况下实现类似或更好的结果&a…

vscode debug无法直接查看eigen变量的问题(解决方法)

主要是给gdb添加一个Eigen相关的printer即可, 网上其他教程都搞太复杂了, 我整理成了一个仓库, 把仓库克隆下来直接运行 ./setup.sh脚本即可配置好 git clone gitgithub.com:fandesfyf/EigenGdb.git cd EigenGdb ./setup.sh 然后在vscode中重新debug即可。 效果 …

使用Arcgis裁剪

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、掩膜提取二、随意裁剪三、裁剪 前言 因为从网站下载的是全球气候数据&#xff0c;而我们需要截取成中国部分&#xff0c;需要用到Arcgis的裁剪工具 一、掩…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Slider组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Slider组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Slider组件 滑动条组件&#xff0c;通常用于快速调节设置值&#xff0c;如音量调…

响应式编程详解(持续更新)

响应式编程 1.多维度看全景1.1响应式编程(Reactive Programming )1.2函数式编程&#xff08;Functional Programming, 简称FP&#xff09;1.3技术演进1.4Rx是什么1.5[响应式宣言](https://www.reactivemanifesto.org/zh-CN) 2.钻进去看本质2.1名称解释(rajava)2.2观察者模式2.3…

注解(Java用于工具处理的标注)

一. 使用注解 1. 含义 注解是放在类&#xff0c;方法&#xff0c;字段&#xff0c;参数前的一种特殊“注释”&#xff0c;是一种用作标注的“元数据”。 2. 三类注解 1&#xff09;由编译器使用的注解&#xff0c;不会编译进.class文件&#xff0c;编译后扔掉&#xff1b;如&…

MPLS VPN功能组件(4)

数据转发过程 VPN数据的转发 顶层公网标签 由LDP分配&#xff0c;指示LSR如何将标签报文从始发的源PE通过LSP标签交换到达目的PE 内层私网标签(VPN标签) 由MP-BGP分配&#xff0c;在将每一条客户路由变为VPNv4路由前缀时会自动为每一条VPNv4前缀关联一个标签 内层私网标签用于…

正版软件 - Proxyman:让网络调试变得更智能、更高效

在软件开发的世界里&#xff0c;网络调试一直是开发者和测试工程师的痛点。传统的调试工具往往操作复杂&#xff0c;界面不够直观&#xff0c;而且性能上也难以满足现代应用的需求。今天&#xff0c;我要向大家介绍一款名为Proxyman的网络调试工具&#xff0c;它以其简洁的界面…

springboot微信小程序 uniapp学习资料分享系统v9uy4

理论意义 当今网络教学已成为各国教育改革 和发展的趋势。因此&#xff0c;构建一个适合交互式课堂教学模式的教学平台就成了当务之 急。 在国内高校&#xff0c;目前交互平台主要用于网络学院的远程教学&#xff0c;至于校园内的正规教学&#xff0c;老师自发建立课程主页的比…

【学网攻】 第(24)节 -- 帧中继(点对点)

系列文章目录 目录 系列文章目录 文章目录 前言 一、帧中继是什么&#xff1f; 二、实验 1.引入 实验拓扑图 实验配置 在帧中继中配置通信链路​编辑 实验验证 文章目录 【学网攻】 第(1)节 -- 认识网络【学网攻】 第(2)节 -- 交换机认识及使用【学网攻】 第(3)节 --…

【Linux网络编程三】Udp套接字编程网络应用场景

【Linux网络编程三】Udp套接字编程网络应用场景 应用场景一&#xff1a;远程命令执行应用场景二&#xff1a;与Windos端相互通信应用场景三&#xff1a;简单聊天1.多线程化2.输入输出分开 应用场景一&#xff1a;远程命令执行 简单的服务器上一篇已经完成&#xff0c;接下来我…

【AIGC核心技术剖析】AI生成音乐:MAGNeT一种直接操作多个音频令牌流的掩码生成序列建模方法

MAGNeT是一种直接操作多个音频令牌流的掩码生成序列建模方法。与先前的工作不同&#xff0c;MAGNeT由一个单阶段、非自回归的变压器组成。在训练期间&#xff0c;论文使用掩码调度器预测从掩码令牌中获得的跨度&#xff0c;而在推断期间&#xff0c;论文通过多个解码步骤逐渐构…

MySQL管理的常用工具(mysqldump备份工具,mysqlimport/source导入工具)

mysqldump mysqldump 客户端工具用来备份数据库或在不同数据库之间进行数据迁移。备份内容包含创建表&#xff0c;及 插入表的SQL语句。 语法 &#xff1a; mysqldump [options] db_name [tables] mysqldump [options] --database/-B db1 [db2 db3...] mysqldump [options] -…