【大厂AI课学习笔记】1.5 AI技术领域(4)CV的六大场景

计算机视觉,是研究如何让计算机象人类一样看的科学。

Computer Vision,我们也称为CV。

它一共有六大场景。

分别是:

图像分类、图像重建、目标检测、图像搜索、图像分割、目标动向监测。

计算机视觉六大场景详解

一、图像分类(Image Classification)

定义:图像分类是计算机视觉中的基础任务,它的目标是将输入的图像自动标注为预定义的类别之一。简单来说,就是给计算机一张图片,让它告诉我们这张图片是什么。

英文名称:如上所述,为Image Classification。

原理:图像分类通常依赖于机器学习或深度学习算法。在深度学习中,卷积神经网络(Convolutional Neural Networks, CNNs)是最常用的模型。CNN通过多层卷积操作提取图像中的特征,然后通过全连接层将这些特征映射到不同的类别上。训练过程中,网络会根据标注的图像数据学习如何区分不同的类别。

应用场景:图像分类在各个领域都有广泛应用,如社交媒体中的自动标签、电商平台的商品分类、医学图像的疾病诊断等。

关键技术:关键技术包括特征提取、模型训练和优化等。在特征提取方面,除了传统的图像处理方法外,深度学习中的卷积操作能够自动学习图像中的层次化特征。在模型训练和优化方面,梯度下降算法、正则化技术、数据增强等都被广泛应用。


二、图像重建(Image Reconstruction)

定义:图像重建是指从损坏、不完整或低质量的图像中恢复出高质量图像的过程。

英文名称:如上所述,为Image Reconstruction。但在某些上下文中,也可能被称为Image Restoration或Image Enhancement。

原理:图像重建通常依赖于图像先验知识和数学模型。例如,在超分辨率重建中,算法会学习如何从低分辨率图像中恢复出高分辨率的细节。在去噪任务中,算法需要区分图像中的噪声和真实信号,然后去除噪声。

应用场景:图像重建技术广泛应用于医学影像分析(如CT、MRI图像的增强)、老照片修复、视频监控中的清晰度提升等。

关键技术:关键技术包括深度学习模型(如生成对抗网络GANs、卷积神经网络CNNs等)、图像先验建模、优化算法等。


三、目标检测(Object Detection)

定义:目标检测是指在图像中定位并识别出特定对象的任务。它不仅要告诉我们图像中有什么对象,还要指出这些对象在哪里。

英文名称:如上所述,为Object Detection。

原理:目标检测通常分为两个阶段:定位和分类。定位阶段负责在图像中找出可能包含对象的区域(通常通过区域提议网络RPN实现),而分类阶段则负责确定这些区域的具体类别。深度学习中的模型如Faster R-CNN、YOLO、SSD等都是目标检测的常用方法。

应用场景:目标检测在自动驾驶(车辆和行人检测)、安防监控(异常事件检测)、智能零售(商品识别和计数)等领域有广泛应用。

关键技术:关键技术包括区域提议、特征提取、分类器设计、非极大值抑制(NMS)等。此外,为了提高检测速度,一些轻量级网络和模型压缩技术也被广泛研究。


四、图像搜索(Image Search)

定义:图像搜索是指根据给定的查询条件(可以是文本、图像或其他模态的数据)在大型图像数据库中查找相似或相关图像的过程。

英文名称:通常称为Image Search或Visual Search。

原理:图像搜索的核心是特征提取和相似度计算。首先,算法会从图像中提取出具有区分性的特征(如颜色、纹理、形状等),然后构建特征索引以便于快速检索。当给定查询条件时,算法会计算查询特征与数据库中图像特征的相似度,并返回相似度最高的图像作为结果。

应用场景:图像搜索在电商平台(根据图片搜索相似商品)、社交媒体(根据上传的图片搜索相关内容)、艺术和设计领域(寻找灵感和素材)等都有广泛应用。

关键技术:关键技术包括特征提取方法(如SIFT、SURF等传统算法以及深度学习中的特征表示学习)、索引构建技术(如哈希算法、树形结构等)、相似度度量方法(如余弦相似度、欧氏距离等)。


五、图像分割(Image Segmentation)

定义:图像分割是指将图像划分为多个具有相似性质的区域或对象的过程。这些区域通常对应于现实世界中的不同物体或场景。

英文名称:如上所述,为Image Segmentation。但根据具体任务的不同,也可能细分为Semantic Segmentation(语义分割)和Instance Segmentation(实例分割)等。

原理:图像分割依赖于对图像中像素或区域之间相似性和差异性的度量。传统方法通常基于阈值、边缘检测、区域生长等算法。而深度学习方法(如FCN、U-Net、Mask R-CNN等)则能够学习更复杂的像素级分类和边界划分任务。

应用场景:图像分割在自动驾驶(道路和障碍物分割)、医学影像分析(器官和病变区域分割)、安防监控(人物分割和跟踪)等领域有广泛应用。

关键技术:关键技术包括像素级分类算法、边界划分算法、上下文信息建模等。此外,为了提高分割精度和效率,一些后处理技术如条件随机场(CRF)也被广泛应用。


六、目标动向监测(Object Tracking)

定义:目标动向监测是指在视频序列中连续跟踪一个或多个对象的位置和运动轨迹的过程。它要求算法能够在不同帧之间建立对象的对应关系,并处理遮挡、光照变化等挑战。

英文名称:通常称为Object Tracking或Target Tracking。在某些特定场景下,也可能称为Motion Tracking(运动跟踪)。

原理:目标动向监测依赖于特征提取和匹配算法。传统方法通常基于手工设计的特征(如颜色、纹理、形状等)和滤波器(如卡尔曼滤波器、粒子滤波器等)进行跟踪。而深度学习方法则能够学习更鲁棒的特征表示和跟踪模型(如基于Siamese网络的跟踪算法)。

应用场景:目标动向监测在自动驾驶(车辆和行人跟踪)、安防监控(异常事件检测和跟踪)、体育比赛分析(球员和球的运动轨迹分析)等领域有广泛应用。

关键技术:关键技术包括特征提取和匹配算法、滤波器设计、模型更新策略等。此外,为了提高跟踪精度和鲁棒性,一些基于深度学习的跟踪算法如Siamese网络、相关滤波器等也被广泛研究。同时,处理遮挡和光照变化等挑战也是目标动向监测中的重要研究方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/674801.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql 数据库基础知识

一、什么是主从复制? 主从复制,是用来建立一个和主数据库完全一样的数据库环境,称为从数据库;主数据库一般是准实时的业务数据库 简单来说,是使用两个或两个以上相同的数据库,将一个数据库当做主数据库,而…

数据库管理-第147期 最强Oracle监控EMCC深入使用-04(20240207)

数据库管理147期 2024-02-07 数据库管理-第147期 最强Oracle监控EMCC深入使用-04(20240207)1 发现Exadata2 Exadata监控计算节点:存储节点RoCE交换机管理交换机PDU 总结 数据库管理-第147期 最强Oracle监控EMCC深入使用-04(202402…

mybatis动态循环拼接SQL,动态拼接字段 和动态拼接 LEFT JOIN

mybatis动态循环拼接SQL,动态拼接字段 和动态拼接 LEFT JOIN select T.BUSINESS_KEY_ "businessKey",D.JHBM "jhbm",D.JHBM || DO.DOC_NAME AS "designDoc",T.PROC_INST_ID_ "lcId",TO_CHAR( T.END_TIME_, yyyy-MM-dd hh24…

P8597 [蓝桥杯 2013 省 B] 翻硬币--2024蓝桥杯冲刺省一

点击跳转例题 我们读完题发现就是简单的模拟&#xff0c;如果不一样&#xff0c;我们就操作一次就行了。 #include <bits/stdc.h> #define int long long //(有超时风险) #define PII pair<int,int> #define endl \n #define LL __int128using namespace std;const…

JavaScript 入门 完整版

目录 第一个知识点&#xff1a;引入js文件 内部引用: 外部引用: 第二个知识点&#xff1a;javascript的基本语法 定义变量&#xff1a; 条件控制(if - else if - else) 第三个知识点&#xff1a;javascript里的数据类型、运算符&#xff1a; 数字类型 字符串类型 布尔…

行为型设计模式—备忘录模式

备忘录模式&#xff1a;不破坏封装的前提下&#xff0c; 捕获一个对象的内部状态&#xff0c; 并在对象之外保存这个状态。 这样以后就可将该对象恢复到原先保存的状态。即利用快照的思想实现对象的版本更替。 备忘录模式主要适用于以下应用场景。 需要保存历史快照的场景。希…

用HTML5实现灯笼效果

本文介绍了两种实现效果&#xff1a;一种使用画布&#xff08;canvas&#xff09;标签/元素&#xff0c;另一种不用画布&#xff08;canvas&#xff09;标签/元素主要使用CSS实现。 使用画布&#xff08;canvas&#xff09;标签/元素实现&#xff0c;下面&#xff0c;在画布上…

【大数据面试题】005 谈一谈 Flink Watermark 水印

一步一个脚印&#xff0c;一天一道面试题。 感觉我现在很难把水印描述的很好&#xff0c;但&#xff0c;完成比完美更重要。后续我再补充。各位如果有什么建议或补充也欢迎留言。 在实时处理任务时&#xff0c;由于网络延迟&#xff0c;人工异常&#xff0c;各种问题&#xf…

PyTorch、NCNN、CV::Mat三者张量的shape

目录 一、PyTorch二、NCNN三、CV::Mat 一、PyTorch 在 PyTorch 中&#xff0c;张量&#xff08;Tensor&#xff09;的形状通常按照 (N, C, H, W) 的顺序排列&#xff0c;其中&#xff1a; N 是批量大小&#xff08;batch size&#xff09; C 是通道数&#xff08;channel numb…

【什么是IDE?新手用哪个IDE比较好?——详细讲解】

什么是IDE&#xff1f;新手用哪个IDE比较好&#xff1f; 1. 什么是IDE&#xff1f;2. 新手适用的IDE 1. 什么是IDE&#xff1f; IDE是集成开发环境&#xff08;Integrated Development Environment&#xff09;的缩写&#xff0c;它是集合了程序开发中多种工具的应用软件。IDE…

机器学习 | 深入集成学习的精髓及实战技巧挑战

目录 xgboost算法简介 泰坦尼克号乘客生存预测(实操) lightGBM算法简介 《绝地求生》玩家排名预测(实操) xgboost算法简介 XGBoost全名叫极端梯度提升树&#xff0c;XGBoost是集成学习方法的王牌&#xff0c;在Kaggle数据挖掘比赛中&#xff0c;大部分获胜者用了XGBoost。…

webp是什么格式,怎么转成.jpg

WebP是一种旨在加快图像加载时间的现代图像格式。这种格式由Google开发&#xff0c;支持无损压缩和有损压缩。WebP格式的图像文件通常比同等质量的JPEG或PNG文件小&#xff0c;这使得它们在提高网页加载速度方面特别有用。 要将WebP格式转换成JPEG格式&#xff0c;我们可以使用…

Java串口通信技术探究3:RXTX库线程 优化系统性能的SerialPortEventListener类

目录 一、失败方案串口监听工具Controller层MySerialPortEventListenerimpl 二、成功方案串口监听工具Controller层MySerialPortEventListenerimpl前端Api 在之前的文章中&#xff0c;我们讨论了使用单例模式的SerialPortEventListener类。然而&#xff0c;这种模式在某些情况下…

【代码随想录26】332.重新安排行程 51.N皇后 37.解数独

目录 332.重新安排行程题目描述参考代码 51.N皇后题目描述参考代码 37.解数独题目描述参考代码 332.重新安排行程 题目描述 给你一份航线列表 tickets &#xff0c;其中 tickets[i] [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。 所有这些机…

09-错误处理

上一篇&#xff1a;08-常用集合(容器) 在软件中&#xff0c;错误是一个不争的事实&#xff0c;因此 Rust 提供了许多功能来处理出错的情况。在许多情况下&#xff0c;Rust 要求您在编译代码之前承认出错的可能性并采取一些措施。这一要求可确保您在将代码部署到生产环境之前发现…

JRebel激活-nginx版本

nginx转发流量&#xff08;代替其他网上说的那个工具&#xff09; proxy_pass http://idea.lanyus.com; 工具激活 填写内容说明&#xff1a; 第一行的激活网址是&#xff1a;http://127.0.0.1:8888/ 正确的GUID。GUID 可以通过专门的网站来生成&#xff08;点击打开&#…

kettle控件-复制记录到结果/ 从结果获取记录的使用

在数据采集过程中&#xff0c;遇到对方数据传送不及时的情况&#xff0c;导致数据漏采集&#xff0c;需要手工反复补采。为了解决这一问题&#xff0c;可以利用kettle的复制记录到结果/从结果获取记录控件。 job的整个流程如下&#xff1a; 设置变量&#xff1a; 创建目录: ge…

STM32输出PWM波控制180°舵机

时间记录&#xff1a;2024/2/8 一、PWM介绍 &#xff08;1&#xff09;脉冲宽度调制 &#xff08;2&#xff09;占空比&#xff1a;高电平时间占整个周期时间的比例 &#xff08;3&#xff09;STM32通过定时器实现PWM时具有两种模式 PWM1模式&#xff1a;向上计数模式下&…

软件测试工程师——缺陷(一篇足以)

目录 定义 缺陷的类型 缺陷的严重程度 缺陷的状态 缺陷的根源 ​缺陷的来源 缺陷的起源 缺陷的生命周期 缺陷的识别 缺陷报告模板 编写缺陷报告的目的 缺陷报告编写的准则 缺陷描述的准则 定义 1. 软件未实现产品说明书中所提及的功能 2. 软件实现了产品说明书中…

Python入门知识点分享——(十九)私有属性和方法

上文我们介绍了面向对象的基础知识&#xff0c;了解了类和对象的联系和语法&#xff0c;这次我们就紧接着来介绍面向对象中的私有特点——私有属性和私有方法。 私有属性&#xff0c;顾名思义是指不能在类的外部被使用或直接访问的属性。私有属性严格意义上来说并不能算做第三…