【Kafka源码走读】Admin接口的客户端与服务端的连接流程

注:本文对应的kafka的源码的版本是trunk分支。写这篇文章的主要目的是当作自己阅读源码之后的笔记,写的有点凌乱,还望大佬们海涵,多谢!

最近在写一个Web版的kafka客户端工具,然后查看Kafka官网,发现想要与Server端建立连接,只需要执行

	Admin.create(Properties props)

方法即可,但其内部是如何工作的,不得而知。鉴于此,该死的好奇心又萌动了起来,那我们今天就来看看,当执行Admin.create(Properties props)方法之后,client是如何与Server端建立连接的。

首先,我们看下Admin.create(Properties props)方法的实现:

    static Admin create(Properties props) {return KafkaAdminClient.createInternal(new AdminClientConfig(props, true), null);}

Admin是一个接口,create()是其静态方法,该方法内部又调用的是KafkaAdminClient.createInternal()方法,createInternal()源码如下:

    static KafkaAdminClient createInternal(AdminClientConfig config, TimeoutProcessorFactory timeoutProcessorFactory) {return createInternal(config, timeoutProcessorFactory, null);}

上述代码又调用了KafkaAdminClient类的另一个createInternal()方法

    static KafkaAdminClient createInternal(AdminClientConfig config, TimeoutProcessorFactory timeoutProcessorFactory,HostResolver hostResolver) {Metrics metrics = null;NetworkClient networkClient = null;Time time = Time.SYSTEM;String clientId = generateClientId(config);ChannelBuilder channelBuilder = null;Selector selector = null;ApiVersions apiVersions = new ApiVersions();LogContext logContext = createLogContext(clientId);try {// Since we only request node information, it's safe to pass true for allowAutoTopicCreation (and it// simplifies communication with older brokers)AdminMetadataManager metadataManager = new AdminMetadataManager(logContext,config.getLong(AdminClientConfig.RETRY_BACKOFF_MS_CONFIG),config.getLong(AdminClientConfig.METADATA_MAX_AGE_CONFIG));List<InetSocketAddress> addresses = ClientUtils.parseAndValidateAddresses(config.getList(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG),config.getString(AdminClientConfig.CLIENT_DNS_LOOKUP_CONFIG));metadataManager.update(Cluster.bootstrap(addresses), time.milliseconds());List<MetricsReporter> reporters = config.getConfiguredInstances(AdminClientConfig.METRIC_REPORTER_CLASSES_CONFIG,MetricsReporter.class,Collections.singletonMap(AdminClientConfig.CLIENT_ID_CONFIG, clientId));Map<String, String> metricTags = Collections.singletonMap("client-id", clientId);MetricConfig metricConfig = new MetricConfig().samples(config.getInt(AdminClientConfig.METRICS_NUM_SAMPLES_CONFIG)).timeWindow(config.getLong(AdminClientConfig.METRICS_SAMPLE_WINDOW_MS_CONFIG), TimeUnit.MILLISECONDS).recordLevel(Sensor.RecordingLevel.forName(config.getString(AdminClientConfig.METRICS_RECORDING_LEVEL_CONFIG))).tags(metricTags);JmxReporter jmxReporter = new JmxReporter();jmxReporter.configure(config.originals());reporters.add(jmxReporter);MetricsContext metricsContext = new KafkaMetricsContext(JMX_PREFIX,config.originalsWithPrefix(CommonClientConfigs.METRICS_CONTEXT_PREFIX));metrics = new Metrics(metricConfig, reporters, time, metricsContext);String metricGrpPrefix = "admin-client";channelBuilder = ClientUtils.createChannelBuilder(config, time, logContext);selector = new Selector(config.getLong(AdminClientConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG),metrics, time, metricGrpPrefix, channelBuilder, logContext);networkClient = new NetworkClient(metadataManager.updater(),null,selector,clientId,1,config.getLong(AdminClientConfig.RECONNECT_BACKOFF_MS_CONFIG),config.getLong(AdminClientConfig.RECONNECT_BACKOFF_MAX_MS_CONFIG),config.getInt(AdminClientConfig.SEND_BUFFER_CONFIG),config.getInt(AdminClientConfig.RECEIVE_BUFFER_CONFIG),(int) TimeUnit.HOURS.toMillis(1),config.getLong(AdminClientConfig.SOCKET_CONNECTION_SETUP_TIMEOUT_MS_CONFIG),config.getLong(AdminClientConfig.SOCKET_CONNECTION_SETUP_TIMEOUT_MAX_MS_CONFIG),time,true,apiVersions,null,logContext,(hostResolver == null) ? new DefaultHostResolver() : hostResolver);return new KafkaAdminClient(config, clientId, time, metadataManager, metrics, networkClient,timeoutProcessorFactory, logContext);} catch (Throwable exc) {closeQuietly(metrics, "Metrics");closeQuietly(networkClient, "NetworkClient");closeQuietly(selector, "Selector");closeQuietly(channelBuilder, "ChannelBuilder");throw new KafkaException("Failed to create new KafkaAdminClient", exc);}}

前面的都是构造参数,关注以下这行代码:

	return new KafkaAdminClient(config, clientId, time, metadataManager, metrics, networkClient,timeoutProcessorFactory, logContext);

KafkaAdminClient的构造方法如下:

    private KafkaAdminClient(AdminClientConfig config,String clientId,Time time,AdminMetadataManager metadataManager,Metrics metrics,KafkaClient client,TimeoutProcessorFactory timeoutProcessorFactory,LogContext logContext) {this.clientId = clientId;this.log = logContext.logger(KafkaAdminClient.class);this.logContext = logContext;this.requestTimeoutMs = config.getInt(AdminClientConfig.REQUEST_TIMEOUT_MS_CONFIG);this.defaultApiTimeoutMs = configureDefaultApiTimeoutMs(config);this.time = time;this.metadataManager = metadataManager;this.metrics = metrics;this.client = client;this.runnable = new AdminClientRunnable();String threadName = NETWORK_THREAD_PREFIX + " | " + clientId;this.thread = new KafkaThread(threadName, runnable, true);this.timeoutProcessorFactory = (timeoutProcessorFactory == null) ?new TimeoutProcessorFactory() : timeoutProcessorFactory;this.maxRetries = config.getInt(AdminClientConfig.RETRIES_CONFIG);this.retryBackoffMs = config.getLong(AdminClientConfig.RETRY_BACKOFF_MS_CONFIG);config.logUnused();AppInfoParser.registerAppInfo(JMX_PREFIX, clientId, metrics, time.milliseconds());log.debug("Kafka admin client initialized");thread.start();}

上面的代码,大部分都是传递参数,但里面有个细节,不能忽略。最后一行代码是thread.start(),这里启动了一个线程,根据thread对象往前找,看看该对象是如何初始化的:

    this.thread = new KafkaThread(threadName, runnable, true);

由此可知,threadKafkaThread构造的对象,KafkaThread继承于Thread类。同时,上述代码中KafkaThread的构造方法中的第二个参数是runnable,该参数的定义如下:

    this.runnable = new AdminClientRunnable();

既然runnable是类AdminClientRunnable构造的对象,那么,当thread.start()代码执行之后,类AdminClientRunnablerun()方法就开始执行了,我们看下run()方法的源码:

    @Overridepublic void run() {log.debug("Thread starting");try {processRequests();} finally {closing = true;AppInfoParser.unregisterAppInfo(JMX_PREFIX, clientId, metrics);int numTimedOut = 0;TimeoutProcessor timeoutProcessor = new TimeoutProcessor(Long.MAX_VALUE);synchronized (this) {numTimedOut += timeoutProcessor.handleTimeouts(newCalls, "The AdminClient thread has exited.");}numTimedOut += timeoutProcessor.handleTimeouts(pendingCalls, "The AdminClient thread has exited.");numTimedOut += timeoutCallsToSend(timeoutProcessor);numTimedOut += timeoutProcessor.handleTimeouts(correlationIdToCalls.values(),"The AdminClient thread has exited.");if (numTimedOut > 0) {log.info("Timed out {} remaining operation(s) during close.", numTimedOut);}closeQuietly(client, "KafkaClient");closeQuietly(metrics, "Metrics");log.debug("Exiting AdminClientRunnable thread.");}}

在上述代码中,只需关注processRequests()方法,源码如下:

    private void processRequests() {long now = time.milliseconds();while (true) {// Copy newCalls into pendingCalls.drainNewCalls();// Check if the AdminClient thread should shut down.long curHardShutdownTimeMs = hardShutdownTimeMs.get();if ((curHardShutdownTimeMs != INVALID_SHUTDOWN_TIME) && threadShouldExit(now, curHardShutdownTimeMs))break;// Handle timeouts.TimeoutProcessor timeoutProcessor = timeoutProcessorFactory.create(now);timeoutPendingCalls(timeoutProcessor);timeoutCallsToSend(timeoutProcessor);timeoutCallsInFlight(timeoutProcessor);long pollTimeout = Math.min(1200000, timeoutProcessor.nextTimeoutMs());if (curHardShutdownTimeMs != INVALID_SHUTDOWN_TIME) {pollTimeout = Math.min(pollTimeout, curHardShutdownTimeMs - now);}// Choose nodes for our pending calls.pollTimeout = Math.min(pollTimeout, maybeDrainPendingCalls(now));long metadataFetchDelayMs = metadataManager.metadataFetchDelayMs(now);if (metadataFetchDelayMs == 0) {metadataManager.transitionToUpdatePending(now);Call metadataCall = makeMetadataCall(now);// Create a new metadata fetch call and add it to the end of pendingCalls.// Assign a node for just the new call (we handled the other pending nodes above).if (!maybeDrainPendingCall(metadataCall, now))pendingCalls.add(metadataCall);}pollTimeout = Math.min(pollTimeout, sendEligibleCalls(now));if (metadataFetchDelayMs > 0) {pollTimeout = Math.min(pollTimeout, metadataFetchDelayMs);}// Ensure that we use a small poll timeout if there are pending calls which need to be sentif (!pendingCalls.isEmpty())pollTimeout = Math.min(pollTimeout, retryBackoffMs);// Wait for network responses.log.trace("Entering KafkaClient#poll(timeout={})", pollTimeout);List<ClientResponse> responses = client.poll(Math.max(0L, pollTimeout), now);log.trace("KafkaClient#poll retrieved {} response(s)", responses.size());// unassign calls to disconnected nodesunassignUnsentCalls(client::connectionFailed);// Update the current time and handle the latest responses.now = time.milliseconds();handleResponses(now, responses);}}

额,上面的代码,此时并未发现连接Server的过程,同时,我发现上述代码通过poll()方法在获取Server端的消息:

    List<ClientResponse> responses = client.poll(Math.max(0L, pollTimeout), now);

按照我当时看这段代码的思路,由于这部分代码没有连接的过程,所以,我也就不进入poll()方法了,从方法名上看,它里面也应该没有连接的过程,所以转而回头看下client对象是如何定义的,在KafkaAdminClient.createInternal(AdminClientConfig config, TimeoutProcessorFactory timeoutProcessorFactory, HostResolver hostResolver)方法中,定义如下:

    networkClient = new NetworkClient(metadataManager.updater(),null,selector,clientId,1,config.getLong(AdminClientConfig.RECONNECT_BACKOFF_MS_CONFIG),config.getLong(AdminClientConfig.RECONNECT_BACKOFF_MAX_MS_CONFIG),config.getInt(AdminClientConfig.SEND_BUFFER_CONFIG),config.getInt(AdminClientConfig.RECEIVE_BUFFER_CONFIG),(int) TimeUnit.HOURS.toMillis(1),config.getLong(AdminClientConfig.SOCKET_CONNECTION_SETUP_TIMEOUT_MS_CONFIG),config.getLong(AdminClientConfig.SOCKET_CONNECTION_SETUP_TIMEOUT_MAX_MS_CONFIG),time,true,apiVersions,null,logContext,(hostResolver == null) ? new DefaultHostResolver() : hostResolver);

再看下NetworkClient的构造函数:

    public NetworkClient(MetadataUpdater metadataUpdater,Metadata metadata,Selectable selector,String clientId,int maxInFlightRequestsPerConnection,long reconnectBackoffMs,long reconnectBackoffMax,int socketSendBuffer,int socketReceiveBuffer,int defaultRequestTimeoutMs,long connectionSetupTimeoutMs,long connectionSetupTimeoutMaxMs,Time time,boolean discoverBrokerVersions,ApiVersions apiVersions,Sensor throttleTimeSensor,LogContext logContext,HostResolver hostResolver) {/* It would be better if we could pass `DefaultMetadataUpdater` from the public constructor, but it's not* possible because `DefaultMetadataUpdater` is an inner class and it can only be instantiated after the* super constructor is invoked.*/if (metadataUpdater == null) {if (metadata == null)throw new IllegalArgumentException("`metadata` must not be null");this.metadataUpdater = new DefaultMetadataUpdater(metadata);} else {this.metadataUpdater = metadataUpdater;}this.selector = selector;this.clientId = clientId;this.inFlightRequests = new InFlightRequests(maxInFlightRequestsPerConnection);this.connectionStates = new ClusterConnectionStates(reconnectBackoffMs, reconnectBackoffMax,connectionSetupTimeoutMs, connectionSetupTimeoutMaxMs, logContext, hostResolver);this.socketSendBuffer = socketSendBuffer;this.socketReceiveBuffer = socketReceiveBuffer;this.correlation = 0;this.randOffset = new Random();this.defaultRequestTimeoutMs = defaultRequestTimeoutMs;this.reconnectBackoffMs = reconnectBackoffMs;this.time = time;this.discoverBrokerVersions = discoverBrokerVersions;this.apiVersions = apiVersions;this.throttleTimeSensor = throttleTimeSensor;this.log = logContext.logger(NetworkClient.class);this.state = new AtomicReference<>(State.ACTIVE);}

事与愿违,有点尴尬,从NetworkClient的构造方法来看,也不涉及连接Server端的代码,那连接是在什么时候发生的呢?我想到快速了解NetworkClient类中都有哪些方法,以寻找是否有建立连接的方法。可喜的是,我找到了initiateConnect(Node node, long now)方法,见下图:

这个方法像是连接Server的,然后顺着这个方法,去查看是谁在调用它的,如下图所示:

调用栈显示,有两个方法调用了initiateConnect()方法,他们分别是ready()maybeUpdate()方法,然后分别对ready()maybeUpdate()方法又进行反向跟踪,看他们又分别被谁调用,中间的反向调用过程在这里就省略了,感兴趣的可以自己去研究下。

我们先从maybeUpdate()方法着手吧,通过该方法,最后可追踪到maybeUpdate()方法最终被poll()所调用。嗯?是不是前面我们也跟踪到poll()方法了。难道就是在调用poll方法之后,才实现连接Server的过程?下面是poll()方法的实现:

    /*** Do actual reads and writes to sockets.** @param timeout The maximum amount of time to wait (in ms) for responses if there are none immediately,*                must be non-negative. The actual timeout will be the minimum of timeout, request timeout and*                metadata timeout* @param now The current time in milliseconds* @return The list of responses received*/@Overridepublic List<ClientResponse> poll(long timeout, long now) {ensureActive();if (!abortedSends.isEmpty()) {// If there are aborted sends because of unsupported version exceptions or disconnects,// handle them immediately without waiting for Selector#poll.List<ClientResponse> responses = new ArrayList<>();handleAbortedSends(responses);completeResponses(responses);return responses;}long metadataTimeout = metadataUpdater.maybeUpdate(now);try {this.selector.poll(Utils.min(timeout, metadataTimeout, defaultRequestTimeoutMs));} catch (IOException e) {log.error("Unexpected error during I/O", e);}// process completed actionslong updatedNow = this.time.milliseconds();List<ClientResponse> responses = new ArrayList<>();handleCompletedSends(responses, updatedNow);handleCompletedReceives(responses, updatedNow);handleDisconnections(responses, updatedNow);handleConnections();handleInitiateApiVersionRequests(updatedNow);handleTimedOutConnections(responses, updatedNow);handleTimedOutRequests(responses, updatedNow);completeResponses(responses);return responses;}

由上述代码可知,maybeUpdate()方法是被metadataUpdater对象所调用,接下来我们就需要了解metadataUpdater对象属于哪个类。
回到NetworkClient的构造方法可看到这段代码:

    if (metadataUpdater == null) {if (metadata == null)throw new IllegalArgumentException("`metadata` must not be null");this.metadataUpdater = new DefaultMetadataUpdater(metadata);} else {this.metadataUpdater = metadataUpdater;}

注意这里,如果metadataUpdater的值为null,则metadataUpdater = new DefaultMetadataUpdater(metadata),也就是说metadataUpdater对象属于DefaultMetadataUpdater类;

如果metadataUpdater的值不为null,则其值保持不变,也就是说,这个值是由调用者传入的。
现在我们需要跟踪调用者传入该值时是否为null,则需要回到KafkaAdminClient.createInternal()方法,下面对代码进行了精简,仅关注重点:

    AdminMetadataManager metadataManager = new AdminMetadataManager(logContext,config.getLong(AdminClientConfig.RETRY_BACKOFF_MS_CONFIG),config.getLong(AdminClientConfig.METADATA_MAX_AGE_CONFIG));.......部分代码省略......networkClient = new NetworkClient(metadataManager.updater(),null,selector,clientId,1,config.getLong(AdminClientConfig.RECONNECT_BACKOFF_MS_CONFIG),config.getLong(AdminClientConfig.RECONNECT_BACKOFF_MAX_MS_CONFIG),config.getInt(AdminClientConfig.SEND_BUFFER_CONFIG),config.getInt(AdminClientConfig.RECEIVE_BUFFER_CONFIG),(int) TimeUnit.HOURS.toMillis(1),config.getLong(AdminClientConfig.SOCKET_CONNECTION_SETUP_TIMEOUT_MS_CONFIG),config.getLong(AdminClientConfig.SOCKET_CONNECTION_SETUP_TIMEOUT_MAX_MS_CONFIG),time,true,apiVersions,null,logContext,(hostResolver == null) ? new DefaultHostResolver() : hostResolver);

由上述代码可知,在传入NetworkClient的构造方法时,metadataManager.updater()=AdminMetadataManager.updater(),而AdminMetadataManager的源码如下:

    public AdminMetadataManager(LogContext logContext, long refreshBackoffMs, long metadataExpireMs) {this.log = logContext.logger(AdminMetadataManager.class);this.refreshBackoffMs = refreshBackoffMs;this.metadataExpireMs = metadataExpireMs;this.updater = new AdminMetadataUpdater();}public AdminMetadataUpdater updater() {return updater;}

由此可知,传入NetworkClient的构造方法时的metadataUpdater对象并不为null,且该对象属于AdminMetadataUpdater类。

好了,到这里我们已经把metadataUpdater的值搞清楚了,其值并不为null。但如果通过IDE的代码默认跟踪方式,会将metadataUpdater的值定位为DefaultMetadataUpdater类,如果是这样,那会有什么影响呢?

前面我们提到,NetworkClient.poll()方法会调用maybeUpdate()方法,即如下这行代码:

    long metadataTimeout = metadataUpdater.maybeUpdate(now);

metadataUpdater对象如果为DefaultMetadataUpdater类,则调用上述maybeUpdate(now)方法时,会执行连接Server的过程,源码如下:

    @Overridepublic long maybeUpdate(long now) {// should we update our metadata?long timeToNextMetadataUpdate = metadata.timeToNextUpdate(now);long waitForMetadataFetch = hasFetchInProgress() ? defaultRequestTimeoutMs : 0;long metadataTimeout = Math.max(timeToNextMetadataUpdate, waitForMetadataFetch);if (metadataTimeout > 0) {return metadataTimeout;}// Beware that the behavior of this method and the computation of timeouts for poll() are// highly dependent on the behavior of leastLoadedNode.Node node = leastLoadedNode(now);if (node == null) {log.debug("Give up sending metadata request since no node is available");return reconnectBackoffMs;}return maybeUpdate(now, node);}# maybeUpdate(now)再调用maybeUpdate(now, node)方法,代码如下:private long maybeUpdate(long now, Node node) {String nodeConnectionId = node.idString();if (canSendRequest(nodeConnectionId, now)) {Metadata.MetadataRequestAndVersion requestAndVersion = metadata.newMetadataRequestAndVersion(now);MetadataRequest.Builder metadataRequest = requestAndVersion.requestBuilder;log.debug("Sending metadata request {} to node {}", metadataRequest, node);sendInternalMetadataRequest(metadataRequest, nodeConnectionId, now);inProgress = new InProgressData(requestAndVersion.requestVersion, requestAndVersion.isPartialUpdate);return defaultRequestTimeoutMs;}// If there's any connection establishment underway, wait until it completes. This prevents// the client from unnecessarily connecting to additional nodes while a previous connection// attempt has not been completed.if (isAnyNodeConnecting()) {// Strictly the timeout we should return here is "connect timeout", but as we don't// have such application level configuration, using reconnect backoff instead.return reconnectBackoffMs;}if (connectionStates.canConnect(nodeConnectionId, now)) {// We don't have a connection to this node right now, make onelog.debug("Initialize connection to node {} for sending metadata request", node);# 这里就是连接Server端的入口了initiateConnect(node, now);return reconnectBackoffMs;}// connected, but can't send more OR connecting// In either case, we just need to wait for a network event to let us know the selected// connection might be usable again.return Long.MAX_VALUE;}

注意上述代码的中文注释部分,initiateConnect(node, now)方法就是连接Server端的入口,该方法的实现如下:

    /*** Initiate a connection to the given node* @param node the node to connect to* @param now current time in epoch milliseconds*/private void initiateConnect(Node node, long now) {String nodeConnectionId = node.idString();try {connectionStates.connecting(nodeConnectionId, now, node.host());InetAddress address = connectionStates.currentAddress(nodeConnectionId);log.debug("Initiating connection to node {} using address {}", node, address);selector.connect(nodeConnectionId,new InetSocketAddress(address, node.port()),this.socketSendBuffer,this.socketReceiveBuffer);} catch (IOException e) {log.warn("Error connecting to node {}", node, e);// Attempt failed, we'll try again after the backoffconnectionStates.disconnected(nodeConnectionId, now);// Notify metadata updater of the connection failuremetadataUpdater.handleServerDisconnect(now, nodeConnectionId, Optional.empty());}}

所以,metadataUpdater对象如果为DefaultMetadataUpdater类,就会在调用poll()方法时,初始化连接Server的过程。但前面已知,metadataUpdater对象属于AdminMetadataUpdater类,他又是在哪里与Server进行连接的呢?

我们再回到之前已知悉的内容,有两个方法调用了initiateConnect()方法,他们分别是ready()maybeUpdate()方法。通过上面的跟踪,目前可以排除maybeUpdate()方法了。接下来,通过ready()方法,我们再反向跟踪一下,哪些地方都调用了ready()方法。

通过层层筛选,发现KafkaAdminClient.sendEligibleCalls()方法调用了ready()方法,如下图所示:

通过sendEligibleCalls()方法又反向查找是谁在调用该方法,如下图所示:

由图可知,是KafkaAdminClient.processRequests()方法调用了sendEligibleCalls()方法,而processRequests()方法正是我们前面跟踪代码时,发现无法继续跟踪的地方。精简之后的代码如下:

    private void processRequests(){long now=time.milliseconds();while(true){// Copy newCalls into pendingCalls.drainNewCalls();......部分代码省略......pollTimeout=Math.min(pollTimeout,sendEligibleCalls(now));......部分代码省略......// Wait for network responses.log.trace("Entering KafkaClient#poll(timeout={})",pollTimeout);List<ClientResponse> responses=client.poll(Math.max(0L,pollTimeout),now);log.trace("KafkaClient#poll retrieved {} response(s)",responses.size());......部分代码省略......}}

由上述代码可知,与Server端的连接是在poll()方法执行之前,隐藏在pollTimeout=Math.min(pollTimeout,sendEligibleCalls(now));代码中。如果想要验证自己的理解是否正确,则可以通过调试源码,增加断点来验证,这里就略过了。

现在回过头来,就会发现,为什么我之前读到这个processRequests()方法时,没有发现这个方法呢?因为没有注意到一些细节,所以忽略了这个方法,误以为连接发生在其他地方。

当然,这可能也和我的惯性思维有关,总是通过类名和方法名来猜测这个方法的大概意图,然后当找不到流程的时候,就通过反向查找调用栈的方式去梳理执行流程,也算是殊途同归吧。

最后,用一张时序图来总结下上面的内容:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/6744.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android 屏幕适配各种宽高比的手机

由于android 手机的屏幕宽高比样式太多了&#xff0c;在设计UI时&#xff0c;很多时候&#xff0c;会因为宽高比&#xff0c;分辨率不同会有展示上的差异。 我是这样解决的 在activity的onCreate方法前&#xff0c;调用&#xff1a; fun screenFit(context: Context) {val me…

系统架构设计师-软件架构设计(2)

目录 一、基于架构的软件开发方法&#xff08;ABSD&#xff09; 1、架构需求 1.1 需求获取 1.2 标识构件 1.3 架构需求评审 2、架构设计 2.1 提出架构模型 2.2 映射构件 2.3 分析构件的相互作用 2.4 产生架构 2.5 设计评审 3、架构文档化 4、架构复审 5、架构实现 5.1 分析与…

获取大疆无人机的飞控记录数据并绘制曲线

机型M350RTK&#xff0c;其飞行记录文件为加密的&#xff0c;我的完善代码如下 gitgithub.com:huashu996/DJFlightRecordParsing2TXT.git 一、下载安装官方的DJIFlightRecord git clone gitgithub.com:dji-sdk/FlightRecordParsingLib.git飞行记录文件在打开【我的电脑】&am…

结构型设计模式之装饰器模式【设计模式系列】

系列文章目录 C技能系列 Linux通信架构系列 C高性能优化编程系列 深入理解软件架构设计系列 高级C并发线程编程 设计模式系列 期待你的关注哦&#xff01;&#xff01;&#xff01; 现在的一切都是为将来的梦想编织翅膀&#xff0c;让梦想在现实中展翅高飞。 Now everythi…

LiveNVR监控流媒体Onvif/RTSP功能-支持无人机、IPC等设备RTMP推流转码分发H5无插件播放也支持GB28181输出

LiveNVR支持无人机、IPC等设备RTMP推流转码分发H5无插件播放也支持GB28181输出 1、无人机推流转国标2、获取RTMP推流地址2.1、RTMP推流地址格式2.2、推流地址示例 2、设备RTMP推流3、配置拉转RTMP3.1、直播流地址格式3.2、直播流地地址示例3.3、通道配置直播流地址 4、配置级联…

深入浅出多种开发语言对接淘宝京东1688阿里巴巴等电商平台,获取实时商品详情数据API接口介绍

api接口详解大全?优秀的设计是产品变得卓越的原因设计API意味着提供有效的接口&#xff0c;可以帮助API使用者更好地了解、使用和集成&#xff0c;同时帮助人们有效地维护它每个产品都需要使用手册&#xff0c;API也不例外在API领域&#xff0c;可以将设计视为服务器和客户端之…

IDE /完整分析C4819编译错误的本质原因

文章目录 概述基本概念代码页标识符字符集和字符编码方案源字符集和执行字符集 编译器使用的字符集VS字符集配置 有何作用编译器 - 源字符集编译器 -执行字符集 Qt Creator下配置MSVC编译器参数动态库DLL字符集配置不同于可执行程序EXE总结 概述 本文将从根本原因上来分析和解…

属猴人性格及一生运势怎么样?

生肖属猴的人聪明&#xff0c;才华出众&#xff0c;是个非常会处理人际关系的生肖&#xff0c; 开朗&#xff0c;大方&#xff0c;人缘好&#xff0c;而且能说会道&#xff0c;嘴巴甜&#xff0c;也特别擅长社交&#xff0c;喜欢热闹&#xff0c; 所以属猴人不管在哪都容易受到…

数仓学习---13、报表数据导出

星光下的赶路人star的个人主页 莫见长安行乐处&#xff0c;空令岁月易蹉跎 文章目录 一、报表数据导出1.1 MySQL建库建表1.1.1 创建数据库1.1.2 创建表 1.2 数据导出1.2.1 DataX配置文件生成脚本1.2.2 编写每日导出脚本 一、报表数据导出 为方便报表应用使用数据&#xff0c;需…

Java诊断利器 Arthas-- 一款释放潜力的神器

嘿&#xff0c;你是不是对Java开发中的调试和诊断问题感到头疼&#xff1f; 别担心&#xff0c;我要告诉你一个秘密武器&#xff01;它就像是一位超级英雄&#xff0c;能够释放你的潜力&#xff0c;解决你的烦恼&#xff01;它的名字叫做Arthas&#xff0c;是一款Java诊断利器…

手写Nacos基本原理——服务注册 配置管理

手写Nacos基本原理 一、背景介绍二、 思路方案三、过程nacosService代码pom文件配置文件具体类 nacosSDK代码pom文件配置类具体类 serviceA代码pom文件配置文件具体类 serviceB代码pom文件配置文件具体类 实现效果四、总结五、升华 一、背景介绍 之前在项目开发的过程中&#…

C# List 详解五

目录 26.GetType() 27.IndexOf(T) 28.IndexOf(T, Int32) 29.IndexOf(T, Int32, Int32) 30.Insert(Int32, T) 31.InsertRange(Int32, IEnumerable) 32.LastIndexOf(T) 33.LastIndexOf(T, Int32) 34.LastIndexOf(T, Int32, Int32) …

【CAS6.6源码解析】调试Rest API接口

CAS的web层默认是基于webflow实现的&#xff0c;ui和后端是耦合在一起的&#xff0c;做前后端分离调用和调试的时候不太方便。但是好在CAS已经添加了支持Rest API的support模块&#xff0c;添加相应模块即可。 文章目录 添加依赖并重新build效果 添加依赖并重新build 具体添加…

32位Cortex-M4 MCU:LPC54607J256ET180E、LPC54605J512BD100K 180MHz嵌入式微控制器

LPC546xx 32 位微控制器(MCU) 具有丰富的外设集、极低的功耗和增强的调试功能。 LPC546xx MCU系列采用ARM Cortex-M4内核&#xff0c;可提供以太网支持&#xff0c;并设有一个TFT LCD控制器和两个CAN FD模块。LPC546xx MCU旨在提高灵活性和性能可扩展性&#xff0c;可提供高达1…

Vue3 Vite electron 开发桌面程序

Electron是一个跨平台的桌面应用程序开发框架&#xff0c;它允许开发人员使用Web技术&#xff08;如HTML、CSS和JavaScript&#xff09;构建桌面应用程序&#xff0c;这些应用程序可以在Windows、macOS和Linux等操作系统上运行。 Electron的核心是Chromium浏览器内核和Node.js…

ABAP 为N的一个数,在原来基础上浮动在-30~30

需求&#xff1a;为N的一个数&#xff0c;在原来基础上浮动在-30~30 *&---------------------------------------------------------------------* *& Report ZZZZ111 *&---------------------------------------------------------------------* *& 需求&…

【算法基础:搜索与图论】3.4 求最短路算法(Dijkstrabellman-fordspfaFloyd)

文章目录 求最短路算法总览Dijkstra朴素 Dijkstra 算法&#xff08;⭐原理讲解&#xff01;⭐重要&#xff01;&#xff09;&#xff08;用于稠密图&#xff09;例题&#xff1a;849. Dijkstra求最短路 I代码1——使用邻接表代码2——使用邻接矩阵 补充&#xff1a;稠密图和稀疏…

npm i babel-plugin-import -D之后报错

替换modules/.bin/XX文件 1.vue-cli-service #!/bin/sh basedir$(dirname "$(echo "$0" | sed -e s,\\,/,g)")case uname in*CYGWIN*) basedircygpath -w "$basedir";; esacif [ -x "$basedir/node" ]; then"$basedir/node"…

【NLP】视觉变压器与卷积神经网络

一、说明 本篇是 变压器因其计算效率和可扩展性而成为NLP的首选模型。在计算机视觉中&#xff0c;卷积神经网络&#xff08;CNN&#xff09;架构仍然占主导地位&#xff0c;但一些研究人员已经尝试将CNN与自我注意相结合。作者尝试将标准变压器直接应用于图像&#xff0c;发现在…

CAXA中.exb或者.dwg文件保存为PDF

通常CAXAZ中的文件为.exb或者.dwg格式&#xff0c;我们想打印或者保存为PDF文件格式&#xff0c;那么就用一下的方法&#xff1a; CAXA文件如图所示&#xff1a; 框选出你要打印的图纸&#xff01;&#xff01;&#xff01;&#xff01; 我们选择"菜单"->"…