[超分辨率重建]ESRGAN算法训练自己的数据集过程

一、下载数据集及项目包

1. 数据集

1.1 文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。

1.2 原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。

如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图所示。

随后将分割好的图像按照train和val的分类,分成如1.1图中的文件结构。

2.  项目包

在我的下载资源中有SR项目包的下载,后续上链接。也可以在我上传的资源中下载。

二、训练ESRGAN

ESRGAN模型包括生成模型的训练和判别模型的训练。

2.1 配置RRDBNet_train.py(生成模型)的参数及训练

2.1.1 训练的图像路径设置:dataroot_gt为HR图像的路径、dataroot_lq为LR图像的路径。

2.1.2 batch_size_per_gpu为batchsize的设置,根据显存大小相应设置,显存越大可以设置的值越大,但是训练时间也会增大。

2.1.3 val的数据集路径设置,dataroot_gt为HR的图像路径、dataroot_lq为LR图像的路径。

2.1.4 训练迭代次数的设置,可以设置到10万或者更大

2.1.5 训练结果指标的计算psnr和ssim。val_freq参数为保存结果的频率。下图中我的设置为1e3即1000轮保存一次。

2.1.6 保存训练权重的频率设置。下图中我的设置为1e3,即为1000次保存一次训练权重。

2.1.7 RRDBNet_train.py的训练
python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml

2.2 配置ESRGAN_train.py(判别模型)的参数及训练

2.2.1 ESRGAN_train.py的参数设置

ESRGAN_train.py的参数设置与RRDBNet_train.py相同,但是多了一个pretrain_network_g参数的设置,即填RRDBNet_train.py训练完以后最好的那次权重路径。

2.2.2 ESRGAN_train.py的训练
python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml

三、测试

3.1 测试图片路径的设置

包括HR和LR的路径,分别为dataroot_gt和dataroot_lq。

3.2 ESRGAN模型权重的路径导入

在pretrain_network_g参数中导入ESRGAN模型训练完后生成的权重路径。

四、训练中断后,继续训练

只需要在训练代码后加上--auto_resume

python basicsr/train.py -opt options\train\ESRGAN\train_RRDBNet_PSNR_x4.yml --auto_resume


------------------     今天不学习,明天变垃圾。    ---------------------

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/673625.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript中call、apply、bind方法的应用与区别

在JavaScript中,call、apply和bind是函数的三个重要方法,它们虽然功能不同,但都可以用来改变函数的执行上下文或者传递参数。本文将分别介绍call、apply和bind方法的应用和区别,并附带示例代码。 一、call方法 call方法的作用是…

Spring GateWay

概述简介 能干什么 反向代理 鉴权 流量控制 熔断 日志监控 Spring Cloud Gateway 与Zuul的区别 在SpringCloud Finchley正式版之前,Spring Cloud推荐的网关是 Netflix提供的Zuul: 1、Zuul 1.x,是一个基于阻塞Ⅳ/O的APl Gateway 2、Zuul 1.x基于Servl…

如何保持mac苹果电脑系统在最佳状态?不卡顿

苹果电脑一直以其卓越的性能和用户友好的操作系统而备受欢迎。然而电脑上的文件、应用程序和缓存可能会逐渐积累,导致性能下降。为了确保你的苹果电脑保持最佳状态,高效清理是至关重要的一步。在本文中,我们将分享一些如何清理苹果电脑更高效…

npm 上传一个自己的应用(1) 搭建一个项目环境

上文 在npm官网中注册一个账号并登录 带着大家创建了一个npm账号 我们先登录官网 然后 我们在自己电脑中创建一个文件夹 这个文件夹叫什么没有太大所谓 我这里直接叫 grnpmtext 然后 我们在这个文件夹中初始化一个项目 终端输入 npm initpackage name 要我们输入项目的名称 …

Java项目使用jasypt加密和解密配置文件中关键信息

一、使用背景 项目中application.yml 配置文件中,如数据库、redis、加密算法的私钥等各种配置的username,password的值都是明文的,其实存在一定的安全隐患,如果被人拿到这些配置文件,将直接对系统安全构成极大威胁&…

imgaug数据增强神器:增强器一览

官网:imgaug — imgaug 0.4.0 documentationhttps://imgaug.readthedocs.io/en/latest/ github:GitHub - aleju/imgaug: Image augmentation for machine learning experiments. imgaug数据增强神器:增强器一览_iaa 图像增强改变颜色-CSDN博客文章浏览阅…

Python环境下基于最大离散重叠小波变换和支持向量回归的金融时间序列预测

金融时间序列具有非线性、高频性、随机性等特点,其波动情况不仅与当前股票市场、房地产市场、贸易市场等有强联动性,而且大幅度起伏对于其他市场有较大的影响和冲击。由于金融市场受多种因素影响且各影响因素间也存在一定复杂动态交互关系,导…

开源项目的三年,我的项目经历了哪些变化?

0.前言 自己一个项目写了三年,到底写了什么东西了,这个项目经历了哪些变化呢?其中的心路历程如何? 兄弟们,要是感觉我的项目有价值,去b站给俺点点关注呐。我更新的更快。点击下面的了解就可以跳转去b站。…

我的docker随笔43:问答平台answer部署

本文介绍开源问答社区平台Answer的容器化部署。 起因 笔者一直想搭建一个类似stack overflower这样的平台,自使用了Typora,就正式全面用MarkdownTyporagit来积累自己的个人知识库,但没有做到web化,现在也还在探索更好的方法。 无…

Spring + Tomcat项目中nacos配置中文乱码问题解决

实际工作的时候碰到了nacos中文乱码的问题,一顿排查最终还是调源码解决了。下面为具体的源码流程,有碰到的可以参考下。 对于nacos配置来说,初始主要源码就在NacosConfigService类中。里面有初始化获取配置content以及设置对应监听器的操作。…

配备Apple T2 安全芯片的 Mac 机型及T2芯片mac电脑U盘装系统教程

T2 芯片为 Mac 提供了一系列功能,例如加密储存和安全启动功能、增强的图像信号处理功能,以及适用于触控 ID 数据的安全保护功能。哪些电脑配备了 T2 安全芯片呢,T2芯片mac电脑又如何重装系统呢?跟随小编一起来看看吧! …

集群及LVS简介、LVSNAT模式原理、LVSNAT模式配置、LVSDR模式原理、LVSDR模式配置、LVS错误排查

集群 将很多机器组织到一起,作为一个整体对外提供服务 集群在扩展性、性能方面都可以做到很灵活 集群分类: 负载均衡集群:Load Balance高可用集群:High Availability高性能计算:High Performance Computing LVS LVS…

6-3、T型加减速单片机程序【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】,查看本系列全部文章 摘要:根据前两节内容,已完成所有计算工作,本节内容介绍具体单片机程序流程及代码 一、程序流程图 根据前两节文章内容可知,T型加减速的关键内容是运动类型的判断以及定时…

CPP项目:Boost搜索引擎

1.项目背景 对于Boost库来说,它是没有搜索功能的,所以我们可以实现一个Boost搜索引擎来实现一个简单的搜索功能,可以更快速的实现Boost库的查找,在这里,我们实现的是站内搜索,而不是全网搜索。 2.对于搜索…

qt/c++实现表情选择框

💂 个人主页:pp不会算法^ v ^ 🤟 版权: 本文由【pp不会算法v】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦 实现功能 。编解码的设计 。映射关系设计 。匹配机制设计 演示效…

Lustre文件系统fid介绍

fid介绍 fid是lustre文件系统中文件的唯一标识,总共128位,fid序列、fid序列内编号、fid版本号(目前未使用默认为0) /*** File IDentifier.** FID is a cluster-wide unique identifier of a file or an object (stripe).* FIDs …

HarmonyOS SDK 助力新浪新闻打造精致易用的新闻应用

原生智能是HarmonyOS NEXT的核心亮点之一,依托HarmonyOS SDK丰富全面的开放能力,开发者只需通过几行代码,即可快速实现AI功能。新浪新闻作为鸿蒙原生应用开发的先行者之一,从有声资讯入手,基于Speech Kit朗读控件上线听…

【C#】.net core 6.0 设置根目录下某个文件夹可访问,访问创建的图片等资源

欢迎来到《小5讲堂》 大家好,我是全栈小5。 这是《C#》系列文章,每篇文章将以博主理解的角度展开讲解, 特别是针对知识点的概念进行叙说,大部分文章将会对这些概念进行实际例子验证,以此达到加深对知识点的理解和掌握。…

记录 | python list extend()

extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。 以下实例展示了 extend()函数的使用方法: #!/usr/bin/pythonaList [123, xyz, zara, abc, 123]; bList [2009, manni]; aList.extend(bList)print …

应用层DoS

应用层(application layer)是七层OSI模型的第七层。应用层直接和应用程序 对接并提供常见的网络应用服务,能够在实现多个系统应用进程相互通信的同 时,完成一系列业务处理所需的服务。位于应用层的协议有很多,常见的包…