参考 http://const.me/articles/simd/simd.pdf
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#cats=Arithmetic&expand=3904,3913,4011,34,4014,4602,4011&techs=MMX,AVX_512,AMX,SVML,Other&ig_expand=11
示例:对4个数字求平方
void mul4_scalar( float* ptr )
{ for( int i = 0; i < 4; i++ ) { const float f = ptr[ i ]; ptr[ i ] = f * f; }
}
使用SIMD
void mul4_vectorized( float* ptr )
{ __m128 f = _mm_loadu_ps( ptr ); f = _mm_mul_ps( f, f ); _mm_storeu_ps( ptr, f );
}
解释:
函数 _mm_loadu_ps
Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) from memory into dst. mem_addr does not need to be aligned on any particular boundary.
加载128比特数据(4个float类型)
函数__m128 _mm_mul_ps (__m128 a, __m128 b)
Synopsis
__m128 _mm_mul_ps (__m128 a, __m128 b)
#include <xmmintrin.h>
Instruction: mulps xmm, xmm
CPUID Flags: SSE
Description
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst.
函数 void _mm_storeu_ps (float* mem_addr, __m128 a)
#include <immintrin.h>
Instruction: movups m128, xmm
CPUID Flags: SSE
Description
Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a into memory. mem_addr does not need to be aligned on any particular boundary.
#include <iostream>
#include <vector>
#include <immintrin.h>void vectorAddSSE(const std::vector<double>& v1, const std::vector<double>& v2, std::vector<double>& result)
{// Ensure vectors are of the same sizesize_t size = v1.size();if (size != v2.size() || size != result.size()){std::cerr << "Vector sizes mismatch." << std::endl;return;}// Process 4 elements at a time using SSEfor (size_t i = 0; i < size; i += 4){// Load 4 double values from each vector__m256d vec1 = _mm256_loadu_pd(&v1[i]);__m256d vec2 = _mm256_loadu_pd(&v2[i]);// Perform vector addition__m256d resultVec = _mm256_add_pd(vec1, vec2);// Store the result back to the result vector_mm256_storeu_pd(&result[i], resultVec);}// Process the remaining elements (if any) without SSEfor (size_t i = size - size % 4; i < size; ++i){result[i] = v1[i] + v2[i];}
}int main()
{std::vector<double> v1 = {1.0, 2.0, 3.0, 4.0};std::vector<double> v2 = {5.0, 6.0, 7.0, 8.0};std::vector<double> result(4);vectorAddSSE(v1, v2, result);// Output the resultstd::cout << "Result: ";for (double value : result){std::cout << value << " ";}std::cout << std::endl;return 0;
}
进阶:求矩阵的和
#pragma once
#include<vector>
#include<string>
template <typename T>
class Matrix {
private:std::vector<std::vector<T>> matrix;int m_nRows;int m_nCols;public:// 构造函数Matrix(int m_nRows, int m_nCols, const T& initial = T());// 获取矩阵的行数和列数int numRows() const; int numCols() const;// 获取矩阵中特定位置的元素T& at(int row, int col);// 获取矩阵元素的值T get(int row, int col) const;// 更新矩阵元素的值void set(int row, int col, const T& value);// 矩阵加法Matrix<T> operator+(const Matrix<T>& other) const;// 矩阵减法Matrix<T> operator-(const Matrix<T>& other) const;// 矩阵乘法Matrix<T> operator*(const Matrix<T>& other) const;//[]操作符重载 const std::vector<T>& operator[](size_t row) const;//[]操作符重载 std::vector<T>& operator[](size_t row);// 掩膜操作Matrix<T> mask(const Matrix<T>& mask, T value = static_cast<T>(0));// 统计矩阵中某个值的数量int countValue(const T& value) const;//保存到图片void saveImage(const std::string& filename);void printPart(int x, int y, int step, std::string s = "");
private:};//sse逐点相
// lineAdd_sse 的特化的前向声明
template <typename T>
inline void lineAdd_sse(const T* left, const T* right, int nCounts, T* save) {};
template <>
inline void lineAdd_sse(const double* left, const double* right, int size, double* save);
template <>
inline void lineAdd_sse(const float* left, const float* right, int size, float* save);
template <>
inline void lineAdd_sse(const int* left, const int* right, int size, int* save);/ 矩阵加法 sse
template <typename T>
Matrix<T> MatrixAdditionSSE(const Matrix<T>& m1, const Matrix<T>& m2);
实现
template<>
inline void lineAdd_sse(const float* left, const float* right, int size, float* save)
{//Process 8 float elements at a time using SSEfor (int i = 0; i < size-7; i += 8){_mm256_storeu_ps(save + i, _mm256_add_ps(_mm256_loadu_ps(left + i), _mm256_loadu_ps(right + i)));}// Process the remaining elements (if any) without SSEfor (size_t i = size - size % 8; i < size; ++i){save[i] = left[i] + right[i];}
}
template<>
inline void lineAdd_sse(const double* left, const double* right, int size, double* save)
{// Process 4 double elements at a time using SSEfor (size_t i = 0; i < size-3; i += 4){// Load 4 double values from each vector__m256d vec1 = _mm256_loadu_pd(&left[i]);__m256d vec2 = _mm256_loadu_pd(&right[i]);// Perform vector addition__m256d resultVec = _mm256_add_pd(vec1, vec2);// Store the result back to the result vector_mm256_storeu_pd(&save[i], resultVec);}// Process the remaining elements (if any) without SSEfor (size_t i = size - size % 4; i < size; ++i){save[i] = left[i] + right[i];}
}template <>
inline void lineAdd_sse(const int* left, const int* right, int size, int* save)
{// Process 8 int elements at a time using SSEfor (int i = 0; i < size - 7; i += 8){__m256i vec1 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(&left[i]));__m256i vec2 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(&right[i]));// Perform vector addition__m256i resultVec = _mm256_add_epi32(vec1, vec2);// Store the result back to the result vector_mm256_storeu_si256(reinterpret_cast<__m256i*>(&save[i]), resultVec);}// Process the remaining elements (if any) without SSEfor (int i = size - size % 8; i < size; ++i){save[i] = left[i] + right[i];}
}template <typename T>
Matrix<T> MatrixAdditionSSE(const Matrix<T>& m1, const Matrix<T>& m2)
{static_assert(sizeof(T) == sizeof(float) || sizeof(T) == sizeof(double) || sizeof(T) == sizeof(int),"Unsupported element type for SSE");if (m1.numRows() != m2.numRows() || m1.numCols() != m2.numCols()){throw std::invalid_argument("Matrix dimensions don't match for addition");}Matrix<T> result(m1.numRows(), m1.numCols());std::vector<std::thread> threads;const int numThreads = std::thread::hardware_concurrency(); // Number of available threadsconst int rowsPerThread = (m1.numRows() + numThreads - 1) / numThreads; // Rows per threadfor (int i = 0; i < numThreads; ++i){threads.emplace_back([&m1, &m2, &result, i, rowsPerThread](){for (int row = i * rowsPerThread; row < std::min((i + 1) * rowsPerThread, result.numRows()); ++row){lineAdd_sse(&m1[row][0], &m2[row][0], result.numCols(), &result[row][0]);}});}for (auto& thread : threads){thread.join();}return std::move(result);
}