基于YOLOV8模型和CCPD数据集的车牌目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOV8模型和CCPD数据集的车牌目标检测系统可用于日常生活中检测与定位车牌目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于YOLOV8模型和CCPD数据集的车牌目标检测系统,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的CCPD车牌数据集标注了车牌这一个类别,数据集总计313518张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的车牌检测数据集包含训练集248610张图片,验证集58446张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:
在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/67144.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Unity编辑器扩展】 | 编辑器扩展入门基础

前言 【Unity编辑器扩展】 | 编辑器扩展入门基础一、基本概念二、核心知识点 简述三、相关API 总结 前言 当谈到游戏开发工具,Unity编辑器是一个备受赞誉的平台。它为开发者提供了一个强大且灵活的环境,使他们能够创建令人惊叹的游戏和交互式体验。然而…

Java“牵手”1688商品列表数据,关键词搜索1688商品数据接口,1688API申请指南

1688商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取1688商品列表和商品详情页面数据,您可以通过开放平台的接口或者直接访问1688商城的网页来获取商品详情信息。以下是两种常用方法的介绍&…

成都瀚网科技有限公司:抖店的评论会消失吗?

抖店是抖音推出的电子商务平台。很多用户在购物后都会对产品进行评价。但有时用户可能会发现抖店评论缺失,让用户产生一些疑惑和困惑。本文将围绕这个问题提供一些答案和解决方案。 1.为什么抖店评论不见了? 首先需要明确的是,抖店评论消失可…

大数据Flink(七十):SQL 动态表 连续查询

文章目录 SQL 动态表 & 连续查询 一、​​​​​​​SQL 应用于流处理的思路

百度等8家企业首批上线大模型服务;大语言模型微调之道

🦉 AI新闻 🚀 百度等8家企业首批上线大模型服务 摘要:百度、字节、中科院旗下8家企业/机构的大模型通过备案,正式面向公众提供服务。百度旗下AI大模型产品文心一言率先开放,用户可下载App或登录官网体验。百川智能也…

Blender里复制对象动画

假设在Blender里有2个对象,其中一个添加了动画,另外一个没有添加动画,那么如何把已有的动画拷贝到没有动画的对象上呢? 分为2步: 先选中没有动画的对象,再按shift键选中有动画的对象,此时2个对…

django/CVE-2017-12794XSS漏洞复现

docker搭建漏洞复现环境 漏洞原理看帮助文档 # Django debug page XSS漏洞(CVE-2017-12794)分析Django发布了新版本1.11.5,修复了500页面中可能存在的一个XSS漏洞,这篇文章说明一下该漏洞的原理和复现,和我的一点点评…

企业电子招投标采购系统源码之电子招投标的组成

​ 功能模块: 待办消息,招标公告,中标公告,信息发布 描述: 全过程数字化采购管理,打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力,为外…

vscode html使用less和快速获取标签less结构

扩展插件里面搜索 css tree 插件 下载 使用方法 选择你要生成的标签结构然后按CTRLshiftp 第一次需要在输入框输入 get 然后选择 Generate CSS tree less结构就出现在这个里面直接复制到自己的less文件里面就可以使用了 在html里面使用less 下载 Easy LESS 插件 自己创建…

手写一个简单爬虫--手刃豆瓣top250排行榜

#拿到页面面源代码 request #通过re来提取想要的有效信息 re import requests import re url"https://movie.douban.com/top250"headers{"user-agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/11…

WPF C# .NET7 基础学习

学习视频地址:https://www.bilibili.com/video/BV1hx4y1G7C6?p3&vd_source986db470823ebc16fe0b3d235addf050 开发工具:Visual Studio 2022 Community 基础框架:.Net 6.0 下载创建过程略 .Net和.Framework 区别是Net是依赖项&#xff…

docker 笔记6:高级篇 DockerFile解析

目录 1.是什么? 2.构建三步骤 3.DockerFile构建过程解析 3.1 Dockerfile内容基础知识 3.2Docker执行Dockerfile的大致流程 总结 4.DockerFile常用保留字指令 5.案例:自定义镜像 5.1 要求: Centos7镜像具备vimifconfigjdk8 5.2编写 5…

css3对文字标签不同宽,不同高使用瀑布流对齐显示

<div class"wrapper" style"padding: 0;"><span class"wf-item task-tags text-center" v-for"(item,index) in data.categorys" :key"index">{{ item }}</span> </div>/* 名称瀑布流显示 */ .wrap…

【golang】调度系列之goroutine

前面的两篇&#xff0c;从相对比较简单的锁的内容入手(也是干货满满)&#xff0c;开始了go的系列。这篇开始&#xff0c;进入更核心的内容。我们知道&#xff0c;go应该是第一门在语言层面支持协程的编程语言(可能是我孤陋寡闻)&#xff0c;goroutine也完全算的上是go的门面。g…

YOLOV7 添加 CBAM 注意力机制

用于学习记录 文章目录 前言一、CBAM1.1 models/common.py1.2 models/yolo.py1.3 yolov7/cfg/training/CBAM.yaml2.4 CBAM 训练结果图 前言 一、CBAM CBAM: Convolutional Block Attention Module 1.1 models/common.py class ChannelAttention(nn.Module):def __init__(sel…

持续集成与持续交付(CI/CD):探讨在云计算中实现快速软件交付的最佳实践

文章目录 持续集成&#xff08;CI&#xff09;的最佳实践持续交付&#xff08;CD&#xff09;的最佳实践云计算环境下的特别注意事项 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏&am…

Java设计模式:四、行为型模式-08:策略模式

文章目录 一、定义&#xff1a;策略模式二、模拟场景&#xff1a;策略模式三、违背方案&#xff1a;策略模式3.0 引入依赖3.1 工程结构3.2 优惠券折扣计算类3.3 单元测试 四、改善代码&#xff1a;策略模式4.1 工程结构4.2 策略模式结构图4.3 优惠券折扣实现4.3.1 定义优惠券接…

音频修复和增强工具 iZotope RX 10 for mac激活最新

iZotope RX 10是一款音频修复和增强软件&#xff0c;主要特点包括&#xff1a; 声音修复&#xff1a;iZotope RX 10可以去除不良噪音、杂音、吱吱声等&#xff0c;使音频变得更加清晰干净。音频增强&#xff1a;iZotope RX 10支持对音频进行音量调节、均衡器、压缩器、限制器等…

深入理解作用域、作用域链和闭包

​ &#x1f3ac; 岸边的风&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! ​ 目录 &#x1f4da; 前言 &#x1f4d8; 1. 词法作用域 &#x1f4d6; 1.2 示例 &#x1f4d6; 1.3 词法作用域的…

数学建模--二次规划型的求解的Python实现

目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 #二次规划模型 #二次规划我们需要用到函数:Cvxopt.solvers.qp(P,q,G,h,A,b) #首先解决二次规划问题和解决线性规划问题的流程差不多 """ 求解思路如下: 1.针对给定的代求式,转化成标准式…