LRU缓存

        有人从网络读数据,有人从磁盘读数据,机智的人懂得合理利用缓存加速数据的读取效率,提升程序的性能,搏得上司的赏识,赢得白富美的青睐,进一步走向人生巅峰~

LRU假说

        LRU缓存(Least Recently Used Cache)即最近最少使用缓存算法,是一种常用的缓存淘汰策略,它基于这样一个假设:

如果数据最近被访问过,那么它在未来被访问的可能性也更高。

        因此,当缓存空间不足时,LRU缓存会优先移除最长时间未被访问的数据项。        

LRU是怎么干活的

新访问的数据添加到缓存

        当一个数据项被访问时,它会被添加到缓存中。如果该数据项已经在缓存中,它会被更新,并且移动到缓存的最前面,表示最近被访问过。

缓存满时移除最老的数据

        如果缓存已满(达到预设的容量限制),最久未被访问的数据项(位于缓存的最后面)会被移除,以便为新的数据项腾出空间。

维护访问顺序

        缓存需要维护数据项的访问顺序,以便快速确定哪些数据项是最近被访问的,哪些是最久未被访问的。

为了有效地实现LRU缓存,通常需要以下两种数据结构:
        双向链表:用于维护数据项的访问顺序。最近访问的数据项位于链表一头,最久未访问的数据项位于链表另一头。当数据项被访问时,它会被移动到链表最近访问那一头。当需要移除数据项时,最久未访问的末尾数据项会被移除。
        哈希表:用于存储键和指向双向链表中相应节点的指针,以便快速定位缓存中的数据项。这样可以在O(1)时间复杂度内访问缓存项。

LRU的简单示例

如下是一个简单的LRU实现

#include <iostream>
#include <list>
#include <string>
#include <unordered_map>
#include <vector>using namespace std;template <typename K, typename V>
class LRUCache {
public:LRUCache(int capacity) {cap = capacity;}V get(const K& key) {auto it = hash.find(key);if (it == hash.end()) {return V();}auto val = it->second->second;put(key, val);return val;}void put(const K& key, const V& value) {auto it = hash.find(key);if (it == hash.end()) {if (hash.size() >= cap) {auto d_it = data_list.begin();auto h_it = d_it->first;data_list.erase(d_it);hash.erase(h_it);}} else {auto d_it = it->second;data_list.erase(d_it);hash.erase(it);}data_list.emplace_back(key, value);hash[key] = --data_list.end();}private:int cap;list<pair<K, V> > data_list;using LIST_IT = typename list<pair<K, V> >::iterator;unordered_map<K, LIST_IT> hash;
};int main() {LRUCache<int, int> lru(2);vector<pair<string, vector<int> > > test_case = {{"put", {1, 1}},{"put", {2, 2}},{"get", {1}},{"put", {3, 3}},{"get", {2}},{"put", {4, 4}},{"get", {1}},{"get", {3}},{"get", {4}},};for (const auto& [opt, param] : test_case) {if (opt == "get") {auto val = lru.get(param.front());cout << val << endl;} else {lru.put(param.front(), param.back());}}return 0;
}

运行测试用例可以得到如下结果:

code % g++ lru.cpp -std=c++17
code % ./a.out       
1
0
0
3
4
code % 

        如上,实现一个LRU的代码量并不算多,并且简单易懂,性能也很不错,毕竟时间复杂度为O(1)。但LRU也有其缺点,例如它没有考虑数据的访问频率。这可能会导致一些不经常使用的数据被缓存,而一些经常使用的数据被淘汰

LRU的改进-LFU

        LFU(Least Frequently Used),即最少使用频率缓存,考虑到访问频率,而不是最近一次访问时间。其可以与LRU结合,形成其他变种,以更好地适应不同的数据访问模式。

LFU的简单示例

        例如,可以通过给LRU缓存数据项加上访问频率,当缓存满需要淘汰时,取尾部的数据选一个访问频次最低的来淘汰

#include <iostream>
#include <list>
#include <string>
#include <unordered_map>
#include <vector>using namespace std;template <typename K, typename V>
class LRUCache {
public:LRUCache(int capacity) {cap = capacity;}V get(const K& key) {auto it = hash.find(key);if (it == hash.end()) {return V();}const auto& data_tuple = *(it->second);auto val = std::get<1>(data_tuple);auto cnt = std::get<2>(data_tuple);put(key, val, cnt + 1);return val;}void put(const K& key, const V& value, int cnt = 1) {auto it = hash.find(key);if (it == hash.end()) {if (hash.size() >= cap) {remove_one_elem();}} else {auto d_it = it->second;data_list.erase(d_it);hash.erase(it);}data_list.emplace_back(key, value, cnt);hash[key] = --data_list.end();}private:void remove_one_elem() {auto need_rm = data_list.begin();auto it = need_rm;for (int i = 1; i < 3 && it != data_list.end(); ++i, ++it) {if (std::get<2>(*it) < std::get<2>(*need_rm)) {need_rm = it;}}hash.erase(std::get<0>(*need_rm));data_list.erase(need_rm);}private:int cap;list<tuple<K, V, int> > data_list;using LIST_IT = typename list<tuple<K, V, int> >::iterator;unordered_map<K, LIST_IT> hash;
};int main() {LRUCache<int, int> lru(2);vector<pair<string, vector<int> > > test_case = {{"put", {1, 1}},{"put", {2, 2}},{"get", {1}},{"put", {3, 3}},{"get", {2}},{"put", {4, 4}},{"get", {1}},{"get", {3}},{"get", {4}},};for (const auto& [opt, param] : test_case) {if (opt == "get") {auto val = lru.get(param.front());cout << val << endl;} else {lru.put(param.front(), param.back());}}return 0;
}

运行测试用例可以得到如下结果:

code % g++ lfu.cpp -std=c++17
code % ./a.out       
1
0
1
0
4
code % 

        与LRU示例的差异点在于,当缓存满时,LFU为从最近未使用的一头,挑选一个访问频次最小的元素进行淘汰。值得注意的是,挑选最少频次并不需要遍历所有的数据,而是针对具体的业务场景,设定一个合适的值即可。

        虽然LRU开销很小,时间复杂度又是O(1),但毕竟每次访问都需要调整链表,对于一些性能要求高的场景,负担还是有点重的,实际的使用场景中,又会根据具体的业务场景,做一些响应的改变。

衍生一下

Clock算法

        Clock算法是一种用于页面置换的缓存淘汰策略,它是LRU算法的一种近似实现,旨在降低实现LRU的开销。Clock算法有时也被称为Second-Chance算法,因为它给了每个页面一个“第二次机会”来避免被置换。

Clock是怎么干活的

        Clock算法维护一个循环链表:所有的页面都被组织成一个循环链表(或称为时钟结构),每个页面都有一个关联的访问位(通常是一个标志位),用于表示该页面自上次检查以来是否被访问过。

        使用指针指向链表中的一个页面:有一个指针(称为时钟指针)指向循环链表中的某个页面。

        维护访问位:当一个页面被访问时,其访问位被设置为1,表示该页面最近被使用过。

        缓存满时检查访问位:当有新需要加载到缓存中,但缓存已满,算法会检查当前时钟指针指向的页面的访问位。如果访问位为1,则将其清零(给予第二次机会),并将时钟指针移动到下一个页面。如果访问位为0,则选择该页面进行置换

        Clock算法的优点是实现简单,开销较低,因为它不需要像真正的LRU算法那样在每次页面访问时都对链表进行调整。它只需要在页面置换时检查和更新访问位。这使得Clock算法特别适合于大规模的缓存系统,如操作系统的页面缓存。

        Clock算法的缺点是它不是完全精确的LRU实现,因为它可能会保留一些不太常用的页面(如果它们在时钟指针到达之前刚好被访问过)。然而,对于许多实际应用来说,Clock算法提供了一个很好的折中方案,既保留了LRU的大部分优点,又显著降低了实现的复杂性和开销。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/670082.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Webshell一句话木马

一、webshell介绍&#xff08;网页木马&#xff09; 分类&#xff1a; 大马&#xff1a;体积大、隐蔽性差、功能多 小马&#xff1a;体积小&#xff0c;隐蔽强&#xff0c;功能少 一句话木马&#xff1a;代码简短&#xff0c;灵活多样 二、一句话木马&#xff1a; &#xff1a;…

架构整洁之道-软件架构-展示器和谦卑对象、不完全边界、层次与边界、Main组件、服务

6 软件架构 6.9 展示器和谦卑对象 在《架构整洁之道-软件架构-策略与层次、业务逻辑、尖叫的软件架构、整洁架构》有我们提到了展示器&#xff08;presenter&#xff09;&#xff0c;展示器实际上是采用谦卑对象&#xff08;humble object&#xff09;模式的一种形式&#xff…

Linux第42步_移植ST公司uboot的第3步_uboot命令测试,搭建nfs服务器和tftp服务器

测试uboot命令&#xff0c;搭建nfs服务器和tftp服务器&#xff0c;是测试uboot非常关键的一步。跳过这一节&#xff0c;后面可能要踩坑。 一、输入“help回车”&#xff0c;查询uboot所支持的命令 二、输入“? bootz回车”&#xff0c;查询“bootz”怎么用 注意&#xff1a;和…

如何正确理解和获取S参数

S参数是网络参数&#xff0c;定义了反射波和入射波之间的关系&#xff0c;给定频率的S参数矩阵指定端口反射波b的矢量相对于端口入射波a的矢量&#xff0c;如下所示&#xff1a; bS∙a 在此基础上&#xff0c;如下图所示&#xff0c;为一个常见的双端口网络拓扑图&#xff1a;…

红队打靶练习:HEALTHCARE: 1

目录 信息收集 1、arp 2、nmap 3、nikto 4、whatweb 目录探测 1、gobuster 2、dirsearch WEB web信息收集 gobuster cms sqlmap 爆库 爆表 爆列 爆字段 FTP 提权 信息收集 本地提权 信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# arp-scan -l Inte…

LoRA:语言模型微调的计算资源优化策略

编者按&#xff1a;随着数据量和计算能力的增加&#xff0c;大模型的参数量也在不断增加&#xff0c;同时进行大模型微调的成本也变得越来越高。全参数微调需要大量的计算资源和时间&#xff0c;且在进行切换下游任务时代价高昂。 本文作者介绍了一种新方法 LoRA&#xff0c;可…

Java LinkedList 实现栈和队列

Java LinkedList 实现栈和队列 package com.zhong.collection;import java.util.LinkedList;public class LinkedListDemo {public static void main(String[] args) {// LinkedList 创建一个队列LinkedList<String> queue new LinkedList<>();// 进队System.out…

2024年【A特种设备相关管理(电梯)】考试题及A特种设备相关管理(电梯)模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 A特种设备相关管理&#xff08;电梯&#xff09;考试题是安全生产模拟考试一点通生成的&#xff0c;A特种设备相关管理&#xff08;电梯&#xff09;证模拟考试题库是根据A特种设备相关管理&#xff08;电梯&#xff…

UML之在Markdown中使用Mermaid绘制类图

1.UML概述 UML&#xff08;Unified modeling language UML&#xff09;统一建模语言&#xff0c;是一种用于软件系统分析和设计的语言工具&#xff0c;它用于帮助软件开发人员进行思考和记录思路。 类图是描述类与类之间的关系的&#xff0c;是UML图中最核心的。类图的是用于…

【Java数据结构】单向 不带头 非循环 链表实现

模拟实现LinkedList&#xff1a;下一篇文章 LinkedList底层是双向、不带头结点、非循环的链表 /*** LinkedList的模拟实现*单向 不带头 非循环链表实现*/ class SingleLinkedList {class ListNode {public int val;public ListNode next;public ListNode(int val) {this.val …

安全通信设置:使用 OpenSSL 为 Logstash 和 Filebeat 提供 SSL 证书

在为 Elasticsearch 采集数据时&#xff0c;我们经常使用到 Filebeat 及 Logstash。在我们之前的很多教程中&#xff0c;我们通常不为 Filebeat 和 Logstash 之前的通信做安全配置。 如何为 Filebeat 及 Logstash 直接建立安全的链接&#xff1f;这个在很多的情况下是非常有用的…

Python算法题集_环形链表

Python算法题集_环形链表 题234&#xff1a;环形链表1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【集合检索】2) 改进版一【字典检测】3) 改进版二【双指针】 4. 最优算法 本文为Python算法题集之一的代码示例 题234&#xff1a;环形链表 …

分享64个节日PPT,总有一款适合您

分享64个节日PPT&#xff0c;总有一款适合您 64个节日PPT下载链接&#xff1a;https://pan.baidu.com/s/190YgEPzmbvopsht-n7YhpQ?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不易…

Django模板(一)

一、基本规则 作为一个Web框架,Django需要一种方便的方式来动态生成HTML。最常用的方法依赖于模板。模板包含所需HTML输出的静态部分以及描述如何插入动态内容的特殊语法 1.1、django默认模板 在settings中配置: TEMPLATES = [{BACKEND: django.template.backends.django.…

Axios设置token到请求头的三种方式

1、为什么要携带token? 用户登录时&#xff0c;后端会返回一个token&#xff0c;并且保存到浏览器的localstorage中&#xff0c;可以根据localstorage中的token判断用户是否登录&#xff0c;登录后才有权限访问相关的页面&#xff0c;所以当发送请求时&#xff0c;都要携带to…

时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于CNN-GRU-AdaBo…

[Linux] 网络编程套接字

目录 预备知识 网络字节序 网络字节序和主机字节序转换的库函数 socket编程接口 socket常见API sockaddr结构 套接字的种类 预备知识 1.在IP数据包头部中&#xff0c;有两个IP地址&#xff0c;分别叫做源IP地址和目的IP地址。 2.端口号&#xff1a;是传输层协议的内容…

Flink面试准备

零. 主要内容 一. Flink 提交 1. Flink怎么提交? Local模式 JobManager 和 TaskManager 共用一个 JVM,只需要jdk支持&#xff0c;单节点运行&#xff0c;主要用来调试。 Standlone模式 Standlone 是Flink自带的一个分布式集群&#xff0c;它不依赖其他的资源调度框架、不依赖y…

elastic-job VS xxl-job

1、Elastic-job介绍 Elastic-job 是由当当网基于quartz 二次开发之后的分布式调度解决方案 &#xff0c; 由两个相对独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成 。Elastic-Job-Lite定位为轻量级无中心化解决方案&#xff0c;使用jar包的形式提供分布式任务的协调服务…

【开源】基于JAVA+Vue+SpringBoot的贫困地区人口信息管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 人口信息管理模块2.2 精准扶贫管理模块2.3 特殊群体管理模块2.4 案件信息管理模块2.5 物资补助模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 人口表3.2.2 扶贫表3.2.3 特殊群体表3.2.4 案件表3.2.5 物资补助表 四…