【算法与数据结构】718、1143、1035、392、115、LeetCode最长重复子数组+最长公共子序列+不相交的线+判断子序列+不同的子序列

文章目录

  • 一、718、最长重复子数组
  • 二、1143、最长公共子序列
  • 三、1035、不相交的线
  • 四、392、判断子序列
  • 五、115、不同的子序列
  • 六、完整代码

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。

一、718、最长重复子数组

在这里插入图片描述

  思路分析

  • 第一步,动态数组的含义。 d p [ i ] [ j ] dp[i][j] dp[i][j]代表以下标 i − 1 i - 1 i1为结尾的nums1,和以下标 j − 1 j - 1 j1为结尾的nums2,最长重复子数组长度为 d p [ i ] [ j ] dp[i][j] dp[i][j]
  • 第二步,递推公式。根据 d p [ i ] [ j ] dp[i][j] dp[i][j]的定义, d p [ i ] [ j ] dp[i][j] dp[i][j]的状态只能由 d p [ i − 1 ] [ j − 1 ] dp[i - 1][j - 1] dp[i1][j1]推导出来。
	if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
  • 第三步,元素初始化。dp数组中的所有元素都初始化为0。
  • 第四步,递归顺序。一共有两层循环,先遍历nums1或者先遍历nums2都可以。
  • 第五步,打印结果。题目要求长度最长的子数组的长度。所以在遍历的时候顺便把 d p [ i ] [ j ] dp[i][j] dp[i][j]的最大值记录下来。
      程序如下
// 718、最长重复子数组
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;if (dp[i][j] > result) result = dp[i][j];}}return result;}
};

复杂度分析:

  • 时间复杂度: O ( n ∗ m ) O(n*m) O(nm) n n n m m m分别是两个数组的长度。
  • 空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

二、1143、最长公共子序列

在这里插入图片描述

  思路分析

  1. 第一步,动态数组的含义。 d p [ i ] [ j ] dp[i][j] dp[i][j]代表以下标 i − 1 i - 1 i1为结尾的text1,和以下标 j − 1 j - 1 j1为结尾的text2,最长公共子序列长度为 d p [ i ] [ j ] dp[i][j] dp[i][j]
  2. 第二步,递推公式。 d p [ i ] [ j ] dp[i][j] dp[i][j]可以由两种情况推导出来:
  • t e x t 1 [ i − 1 ] text1[i - 1] text1[i1] t e x t 2 [ j − 1 ] text2[j - 1] text2[j1]相同:那么找到一个公共元素, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j] = dp[i - 1][j - 1] + 1 dp[i][j]=dp[i1][j1]+1
  • t e x t 1 [ i − 1 ] text1[i - 1] text1[i1] t e x t 2 [ j − 1 ] text2[j - 1] text2[j1]不相同:那么 t e x t 1 [ 0 , i − 2 ] text1[0, i - 2] text1[0,i2] t e x t 2 [ 0 , j − 1 ] text2[0, j - 1] text2[0,j1]的最长公共子序列和 t e x t 1 [ 0 , i − 1 ] text1[0, i - 1] text1[0,i1] t e x t 2 [ 0 , j − 2 ] text2[0, j - 2] text2[0,j2]的最长公共子序列,取最大的。
	if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
  1. 第三步,元素初始化。dp数组中的所有元素都初始化为0。
  2. 第四步,递归顺序。一共有两层循环,从前往后进行遍历。
  3. 第五步,打印结果。题目要求最长公共子序列的长度。所以在遍历的时候顺便把 d p [ i ] [ j ] dp[i][j] dp[i][j]的最大值记录下来。
      程序如下
// 1143、最长公共子序列
class Solution2 {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));int result = 0;for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);if(dp[i][j] > result) result = dp[i][j];}}return result;}
};

复杂度分析:

  • 时间复杂度: O ( n ∗ m ) O(n*m) O(nm) n n n m m m分别是两个序列的长度。
  • 空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

三、1035、不相交的线

在这里插入图片描述
在这里插入图片描述

  思路分析:本题要求绘制的最大连线数,实际上就是求两个字符串的最长公共子序列的长度,即1143、最长公共子序列这道题。我们将字符串改成数组,代码完全一样,直接copy过来。
  程序如下

// 1035、不相交的线
class Solution3 {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);if (dp[i][j] > result) result = dp[i][j];}}return result;}
};

复杂度分析:

  • 时间复杂度: O ( n ∗ m ) O(n*m) O(nm) n n n m m m分别是两个数组的长度。
  • 空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

四、392、判断子序列

在这里插入图片描述

  思路分析:本题的思路和1143、最长公共子序列的分析思路差不多,主要区别在于本题判断的是“ 最长公共子序列是不是另一个字符串的子串”。那么我们找到二者的最长公共子串,判断其长度是否等于s的长度即可。

  1. 第一步,动态数组的含义。 d p [ i ] [ j ] dp[i][j] dp[i][j]代表以下标 i − 1 i - 1 i1为结尾的s,和以下标 j − 1 j - 1 j1为结尾的t,最长公共子序列长度为 d p [ i ] [ j ] dp[i][j] dp[i][j]
  2. 第二步,递推公式。 d p [ i ] [ j ] dp[i][j] dp[i][j]可以由两种情况推导出来:
  • s [ i − 1 ] s[i - 1] s[i1] t [ j − 1 ] t[j - 1] t[j1]相同:那么找到一个公共元素, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j] = dp[i - 1][j - 1] + 1 dp[i][j]=dp[i1][j1]+1
  • s [ i − 1 ] s[i - 1] s[i1] t [ j − 1 ] t[j - 1] t[j1]不相同:那么 d p [ i ] [ j ] dp[i][j] dp[i][j]等于 s [ 0 , i − 1 ] s[0, i - 1] s[0,i1] t [ 0 , j − 2 ] t[0, j - 2] t[0,j2]的最长公共子序列。
	if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = dp[i][j - 1];		// 与1143不同的地方
  1. 第三步,元素初始化。dp数组中的所有元素都初始化为0。
  2. 第四步,递归顺序。一共有两层循环,从前往后进行遍历。
  3. 第五步,打印结果。题目要求最长公共子序列的长度。所以在遍历的时候顺便把 d p [ i ] [ j ] dp[i][j] dp[i][j]的最大值记录下来,在用三目运算符返回。
	return result == s.size() ? true : false;	// 与1143不同的地方

  程序如下

// 392、判断子序列-动态规划
class Solution4 {
public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));int result = 0;for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = dp[i][j - 1];		// 与1143不同的地方if (dp[i][j] > result) result = dp[i][j];}}return result == s.size() ? true : false;	// 与1143不同的地方}
};

复杂度分析:

  • 时间复杂度: O ( n ∗ m ) O(n*m) O(nm) n n n m m m分别是两个字符串的长度。
  • 空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

五、115、不同的子序列

在这里插入图片描述

  思路分析:本题的思路和1143、最长公共子序列的分析思路差不多。本题统计字符串t在字符串s中出现的次数,我们可以理解为删除掉字符串s中的部分字符使得字符串s和字符串t相同的方法数量。

  1. 第一步,动态数组的含义。 d p [ i ] [ j ] dp[i][j] dp[i][j]代表以下标 j − 1 j - 1 j1为结尾的t在以下标 i − 1 i - 1 i1为结尾的s中出现的次数为 d p [ i ] [ j ] dp[i][j] dp[i][j],即 t [ 0 , j − 1 ] t[0, j-1] t[0,j1] s [ 0 , i − 1 ] s[0, i-1] s[0,i1]中出现的次数。

  2. 第二步,递推公式。 d p [ i ] [ j ] dp[i][j] dp[i][j]可以由两种情况推导出来:

  • s [ i − 1 ] s[i - 1] s[i1] t [ j − 1 ] t[j - 1] t[j1]相同:此时的 d p [ i ] [ j ] dp[i][j] dp[i][j]由两部分组成。一部分是用 s [ i − 1 ] s[i-1] s[i1]来匹配:相当于在 s [ 0 , i − 2 ] s[0, i-2] s[0,i2]中寻找 t [ 0 , j − 2 ] t[0, j-2] t[0,j2]的个数(剩下一个字符 s [ i − 1 ] s[i - 1] s[i1] t [ j − 1 ] t[j - 1] t[j1]已经匹配了),即 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1];另一部分是不用 s [ i − 1 ] s[i-1] s[i1]来匹配,相当于在 s [ 0 , i − 2 ] s[0, i-2] s[0,i2]中寻找 t [ 0 , j − 1 ] t[0, j-1] t[0,j1]的个数,即 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j]
  • s [ i − 1 ] s[i - 1] s[i1] t [ j − 1 ] t[j - 1] t[j1]不相同:那么 s [ 0 , i − 2 ] s[0, i - 2] s[0,i2]中, t [ 0 , j − 1 ] t[0, j - 1] t[0,j1]的数量和 s [ 0 , i − 1 ] s[0, i - 1] s[0,i1]中, t [ 0 , j − 1 ] t[0, j - 1] t[0,j1]的数量相同。 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j] = dp[i-1][j] dp[i][j]=dp[i1][j]
	if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];	else dp[i][j] = dp[i - 1][j];

  例子:s=“bageg”,t=“bag”。那么用s[4]="g"组成bag的方法数量,相当于在s[0, 3]="bage"中寻找中t[0, 1]="ba"的个数,只有s[0]s[1]s[4]这一种。而不用s[4]="g"组成bag的方法数量,相当于在s[0,3] ="bage"中,寻找t[0,2]="bag"的个数,即dp[4, 3],只有s[0]s[1]s[2]这一种。(说明:dp[4,2]=1代表在s[0,3] ="bage"中,t[0,1]="ba"的个数为1。)

在这里插入图片描述

  1. 第三步,元素初始化。 d p [ i ] [ 0 ] dp[i][0] dp[i][0](第一列)表示字符串 s [ 0 , i − 1 ] s[0, i-1] s[0,i1]中可以随便删除元素,出现空字符串的个数。 d p [ 0 ] [ j ] dp[0][j] dp[0][j](第一行)表示空字符串 s s s,出现字符串 t [ 0 , j − 1 ] t[0, j-1] t[0,j1]的个数。其中,空字符串s中空字符串t的个数为1。那么 d p [ 0 ] [ 0 ] = 1 , d p [ i ] [ 0 ] = 1 , d p [ 0 ] [ j ] = 0 dp[0][0]=1, dp[i][0] = 1, dp[0][j] = 0 dp[0][0]=1,dp[i][0]=1,dp[0][j]=0
  2. 第四步,递归顺序。一共有两层循环,从前往后进行遍历。
  3. 第五步,打印结果。
      程序如下
// 115、不同的子序列-动态规划
class Solution5 {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1, 0));for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;		// 第一列初始化为1, dp[0][0]为1for (int j = 1; j <= t.size(); j++) dp[0][j] = 0;		// 第一行初始化为0, 可以省略for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];	else dp[i][j] = dp[i - 1][j];}}return dp[s.size()][t.size()];}
};

复杂度分析:

  • 时间复杂度: O ( n ∗ m ) O(n*m) O(nm) n n n m m m分别是两个字符串的长度。
  • 空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

六、完整代码

# include <iostream>
# include <vector>
# include <string>
using namespace std;// 718、最长重复子数组
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;if (dp[i][j] > result) result = dp[i][j];}}return result;}
};// 1143、最长公共子序列
class Solution2 {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));int result = 0;for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);if (dp[i][j] > result) result = dp[i][j];}}return result;}
};// 1035、不相交的线-动态规划
class Solution3 {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);if (dp[i][j] > result) result = dp[i][j];}}return result;}
};// 392、判断子序列-动态规划
class Solution4 {
public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));int result = 0;for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = dp[i][j - 1];		// 与1143不同的地方if (dp[i][j] > result) result = dp[i][j];}}return result == s.size() ? true : false;	// 与1143不同的地方}
};// 115、不同的子序列-动态规划
class Solution5 {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1, 0));for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;		// 第一列初始化为1, dp[0][0]为1for (int j = 1; j <= t.size(); j++) dp[0][j] = 0;		// 第一行初始化为0, 可以省略for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];	else dp[i][j] = dp[i - 1][j];}}return dp[s.size()][t.size()];}
};int main() {//vector<int> nums1 = { 1, 2, 3, 2, 1 }, nums2 = { 3, 2, 1, 4, 7 };		// 测试案例//Solution s1;//int result = s1.findLength(nums1, nums2);//string text1 = "abcde", text2 = "ace";		// 测试案例//Solution2 s1;//int result = s1.longestCommonSubsequence(text1, text2);//vector<int> nums1 = { 1, 4, 2 }, nums2 = { 1, 2, 4 };		// 测试案例//Solution3 s1;//int result = s1.maxUncrossedLines(nums1, nums2);//string s = "abc", t = "ahbgdc";			// 测试案例//Solution4 s1;//int result = s1.isSubsequence(s, t);string s = "babgbag", t = "bag";		// 测试案例Solution5 s1;int result = s1.numDistinct(s, t);cout << result << endl;system("pause");return 0;
}

end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/669354.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

问题:下列哪些属于历史文化资源的特征( ). #学习方法#学习方法

问题&#xff1a;下列哪些属于历史文化资源的特征( ). A、稀缺性 B、脆弱性 C、可再生性 D、多样性 参考答案如图所示

C语言函数递归详解

递归是什么&#xff1f; 递归&#xff0c;顾名思义&#xff0c;就是递推和回归。 递归是一种解决问题的方法&#xff0c;在C语言中&#xff0c;递归就是函数自己调用自己。 #include <stdio.h> int main() {printf("hehe\n");main();//main函数中⼜调⽤了main…

如何部署Linux AMH服务器管理面板并结合内网穿透远程访问

文章目录 1. Linux 安装AMH 面板2. 本地访问AMH 面板3. Linux安装Cpolar4. 配置AMH面板公网地址5. 远程访问AMH面板6. 固定AMH面板公网地址 AMH 是一款基于 Linux 系统的服务器管理面板&#xff0c;它提供了一系列的功能&#xff0c;包括网站管理、FTP 管理、数据库管理、DNS 管…

复旦大学NLP团队发布86页大模型Agent综述

复旦大学自然语言处理团队&#xff08;FudanNLP&#xff09;发布了一篇长达86页的综述论文&#xff0c;探讨了基于大型语言模型的智能代理的现状和未来。该论文从AI Agent的历史出发&#xff0c;全面梳理了基于大型语言模型的智能代理现状&#xff0c;包括LLM-based Agent的背景…

优秀学习网站推荐-第一辑

原文地址&#xff1a;https://jaune162.blog/2024/02/15/study-website-recommend Developer Roadmaps&#xff08;开发者路线图&#xff09; 官网地址&#xff1a;https://roadmap.sh/ 该网站包含了各个方向、各个语言的开发人员从零开始学习的路线图。 下图为Java方向的学…

Jenkins配置http请求github,发布release

学无止境&#xff0c;气有浩然&#xff01; Jenkins配置http请求github&#xff0c;发布release 前言Jenkins配置github配置在这里插入图片描述 打完收工! 前言 工作中进行了github迁移&#xff0c;原先的gitlab中配置的Jenkins的CI/CD步骤需要发布到Github发布release版本&am…

2024年人工智能可以报考的证书有哪些

人工智能&#xff08;AI&#xff09;是致力于解决通常与人类智能相关联的认知性问题的计算机科学领域&#xff0c;这些问题包括学习、创造和图像识别等。现代组织从各种来源收集大量数据&#xff0c;例如智能传感器、人工生成的内容、监控工具和系统日志。人工智能的目标是创建…

LeetCode:292.Nim 游戏

大一开学到现在&#xff0c;我不禁思考一个问题&#xff1a;代码重要吗&#xff1f; 我的答案是&#xff0c;根本不重要&#xff0c;或者说&#xff0c;是次要的。我认为分析问题&#xff0c;和画图是写题的开始&#xff0c;方法的学习&#xff0c;和灵活运用是目的。代码从来…

贪心算法篇2

“星辰野草&#xff0c;造出无边的天地~” 最⻓递增⼦序列 (1) 题目解析 (2) 算法原理 class Solution { public:int lengthOfLIS(vector<int>& nums) {// 使用dp int n nums.size(), ret 1;// 初始化为1vector<int> dp(n1,1);// 从第二个位置…

Spring速成(二)

Spring速成&#xff08;二&#xff09; 掌握IOC/DI配置管理第三方bean掌握IOC/DI的注解开发掌握IOC/DI注解管理第三方bean完成Spring与Mybatis及Junit的整合开发 1&#xff0c;IOC/DI配置管理第三方bean 1.1 案例:数据源对象管理 1.1.1 环境准备 学习之前&#xff0c;先来准…

LFU缓存(Leetcode460)

例题&#xff1a; 分析&#xff1a; 这道题可以用两个哈希表来实现&#xff0c;一个hash表&#xff08;kvMap&#xff09;用来存储节点&#xff0c;另一个hash表&#xff08;freqMap&#xff09;用来存储双向链表&#xff0c;链表的头节点代表最近使用的元素&#xff0c;离头节…

Deepin系统安装x11vnc远程桌面工具实现无公网ip访问本地桌面

文章目录 1. 安装x11vnc2. 本地远程连接测试3. Deepin安装Cpolar4. 配置公网远程地址5. 公网远程连接Deepin桌面6. 固定连接公网地址7. 固定公网地址连接测试 x11vnc是一种在Linux系统中实现远程桌面控制的工具&#xff0c;它的原理是通过X Window系统的协议来实现远程桌面的展…

Spring Boot整合MyBatis Plus实现基本CRUD与高级功能

文章目录 1. 引言2. 项目搭建与依赖配置2.1 添加MyBatis Plus依赖2.2 配置数据源与MyBatis Plus 3. 实现基本CRUD功能3.1 创建实体类3.2 创建Mapper接口3.3 实现Service层3.4 控制器实现 4. 高级功能实现4.1 自动填充功能4.2 乐观锁功能4.3 逻辑删除功能 5. 拓展&#xff1a;My…

构造回文数组

目录 原题描述&#xff1a; 题目描述 时间&#xff1a;1s 空间&#xff1a;256M 题目描述&#xff1a; 输入格式&#xff1a; 输出格式&#xff1a; 样例1输入&#xff1a; 样例1输出&#xff1a; 样例2输入&#xff1a; 样例2输出&#xff1a; 约定&#xff1a; 作…

ubantu扩容解决 sudo -i 报无法识别

GParted给ubuntu系统磁盘resize大小时候出现cannot resize read-only file system解决办法_gparted无法调整分区大小-CSDN博客https://blog.csdn.net/ningmengzhihe/article/details/127295333?spm1001.2014.3001.5506 解决磁盘挂载系统目录出现问题&#xff1a; 1、sudo -i…

【HarmonyOS应用开发】后台提醒(十六)

简述 随着生活节奏的加快&#xff0c;我们有时会忘记一些重要的事情或日子&#xff0c;所以提醒功能必不可少。应用可能需要在指定的时刻&#xff0c;向用户发送一些业务提醒通知。例如购物类应用&#xff0c;希望在指定时间点提醒用户有优惠活动。为满足此类业务诉求&#xf…

C语言-分支和循环语句

目录 分支语句 if语句 关系操作符&#xff1a; 逻辑操作符&#xff1a; switch语句 循环语句 while循环 for循环 ​编辑 循环控制语句&#xff08;break&#xff0c;continue&#xff09; goto语句充当循环 分支语句 if语句 if语句的括号内需要写条件表达式&#xff0c;通…

超多制作模板的姓氏头像生成器微信小程序源码

超多制作模板的姓氏头像生成器微信小程序源码&#xff0c;这是一款姓氏头像制作小工具&#xff0c;内含丰富多样的模板提供制作。 以前的基本是固定位置生成&#xff0c;这款制作支持拖拽调整位置&#xff0c;自定义颜色&#xff0c;阴影等等。

探索设计模式的魅力:外观模式简化术-隐藏复杂性,提供简洁接口的设计秘密

设计模式专栏&#xff1a;http://t.csdnimg.cn/U54zu 目录 引言&#xff1a;探索简化之路 一、起源和演变 二、场景案例分析 2.1 不用模式实现&#xff1a;用一坨坨代码实现 2.2 问题 2.3 外观模式重构代码 定义 界面 接口 利用外观模式解决问题步骤 外观模式结构和说明 重构…

Linux 网络:PTP 简介

文章目录 1. 前言2. PTP(Precision Time Protocol​) IEEE 1588 协议简介2.1 PTP IEEE 1588 协议时间同步原理2.2 PTP IEEE 1588 协议时钟类型2.2.1 普通时钟(OC: Ordinary Clock)2.2.2 边界时钟(BC: Boundary Clock)2.2.3 透明时钟(TC: Transparent Clock)2.2.3.1 端对端透明时…