大数据企业应用场景分析

目录

一、企业分析

1.1 企业领域维度分析

1.2 技术服务型维度分析

1.3 细分领域维度分析

二、大数据应用场景

2.1 数据分析

2.2 智能推荐

2.3 产品/流程优化

2.4 异常监测

2.5 智能管理

2.6 人工智能和机器学习

三、总结


前言:想讲清楚大数据应用对企业的价值,需要先分清楚有哪些企业,什么场景下需要用到大数据技术,本文从两个视角分析,一个是大数据企业类型,二是应用场景。给下一篇大数据应用对企业的价值做铺垫。

一、企业分析

      大数据企业可以根据不同维度进行分类,这里从企业领域、技术服务类型、领域细分三个维度进行分析。

1.1 企业领域维度分析

       根据企业的业务领域,可以分为互联网、营销行业、政府及公共事业行业、服务业、制造业、金融、医疗、物流、农业等领域;

       业务领域的划分,区别是企业服务对象群体关注点的不同,比如营销关注消费者人群、政府及公共事业关注公共事业、制造业和农业关注生产对象、金融和医疗关注具体的信息、旅游和律师等关注服务效果,企业由于经营对象的不同,其应用数据主体和相关数据不同。

比如营销行业,主体数据是消费者的消费情况,关联数据是生活区域、手机品牌、职业等;

比如物流,主体数据是运单详情,关联数据是运输方式、区域路径、城市流量分布等。

1.2 技术服务型维度分析

       根据大数据企业的技术特点和服务类型,还可以将大数据企业划分为数据资源驱动型、技术驱动型和服务驱动型等类型。

       数据资源驱动型领域主要包括网络设施、大数据采集设施、大数据存储设施、服务器、大数据安全防护设施等基础设施建设和智能终端设备的生产、销售与租赁;

       技术驱动型领域主要包括大数据挖掘、可视化展示、大数据并行运算、高性能计算、大数据综合分析云平台等软硬件的生产、销售与租赁;

       服务驱动型领域主要指充分利用大数据分析等技术,通过数据租售、预测、咨询、可视化和周边服务等商业模式,为各类行业的用户提供大数据技术支撑与大数据价值的服务。

1.3 细分领域维度分析

比如互联网企业为例,可以细分为以下几种:

  • 商务公司:主要的客户是向客户出售物品;
  • 服务平台公司(SaaS):你做的是将SaaS送到用户手中;
  • 免费移动用户:通过应用内购买使用功能赚钱;
  • 媒体网站:生产内容的同时依靠广告赚钱;
  • 用户生成内容:让用户在你的平台上生产内容;
  • 双边市场:开发一个双边市场用以联系卖家和买家;

       细分领域关注的核心指标和主要群体都不一样,大数据的应用方向也有所不同,商务公司在定制化推荐、产品运营;服务平台关注点在产品性能和体验优化;免费移动用户关注点在产品本身的价值,诞生在调研之前;媒体网站关注点在用户的体验运营和内容吸引力上;用户生成内容在定制化推荐、内容管理上;双边市场在推广和留存等流量管理上。

        其他领域,还可以根据业务做细分,比如金融有一级和二级市场、教育分线上和线下、交通运输、供应链与物流、农业、工业与制造业、体育文化、环境气象、能源行业等。

这些细分领域,关注的对象群体一样,但是视角不一样,所以第一重要指标也不同。

二、大数据应用场景

大数据技术在各行各业都有广泛的应用场景,一些常见的大数据技术应用场景如下:

2.1 数据分析

       利用大数据技术进行数据分析,帮助企业更好地理解应用的趋势、客户需求,做出数据驱动的决策,例如,商业BI、用户社交媒体、数据医疗、教育等场景分析。

2.2 智能推荐

       基于用户行为和偏好数据,利用大数据技术构建个性化的推荐系统,提高用户体验,例如电商推荐、媒体内容推荐、视频推荐等。

2.3 产品/流程优化

      对于运营的产品,对内或者对外的服务平台,可以基于使用情况,优化体验,运维优化,任务性能优化等。

2.4 异常监测

       对于基础服务,业务等,从不同的视角都存在风险的可能,可以做风控相关的项目,比如物联网 (IoT) 监测,风险预测,业务风控,用户风控等。

2.5 智能管理

      提升安全、规划、提升服务效率和质量,比如利用大数据进行交通流量监测、智能交通管理、终端资产管理、物流路径优化,提高交通和物流效率。

2.6 人工智能和机器学习

      利用大数据进行机器学习模型训练,比如应用于图像识别、语音识别、自然语言处理等领域。

三、总结

       大到企业,小到业务团队,都有可落地的大数据应用场景,可以和需要是两回事,有价值才需要;从价值角度,评估业务数据的情况,数据大量级、性能高要求都是大数据技术的适用场景。引入大数据技术,从数据分析、智能推荐、产品功能优化、异常检测、智能管理、人工智能和机器学习应用的视角,评估业务的必要性,再规划资源落地,尽量少走弯路。下一章描述我知道的大数据应用的价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/668784.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

响应式开发如何设置断点,小屏幕界面该如何显示(有动图)

Hi,我是贝格前端工场,本期分享响应式开发,如何设置屏幕断点,pc页面布局到了移动端之后该如何布局的问题,微软也提供了设置屏幕断点的动图演示,非常直观。 一、什么是响应式开发,为何要设置屏幕断…

常用存储器

目录 一、存储器的种类 二、易失性存储器(RAM) 1. DRAM (1)SDRAM (2)DDR SDRAM 2. SRAM 3. DRAM与SRAM的应用场合 三、非易失性存储器 1. ROM (1)MASK ROM (2…

YoloV8改进策略:Neck改进:HAM混合注意力机制改进YoloV8|多种改进,多种姿势涨点|代码注释详解

摘要 HAM通过快速一维卷积来缓解通道注意机制的负担,并引入通道分离技术自适应强调重要特征。HAM作为通用模块,在CIFAR-10、CIFAR-100和STL-10数据集上实现了SOTA级别的分类性能。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0031320322002667?vi…

2024年【天津市安全员B证】考试报名及天津市安全员B证最新解析

题库来源:安全生产模拟考试一点通公众号小程序 天津市安全员B证考试报名根据新天津市安全员B证考试大纲要求,安全生产模拟考试一点通将天津市安全员B证模拟考试试题进行汇编,组成一套天津市安全员B证全真模拟考试试题,学员可通过…

【产品升级】SmartPipe升级到版本2.0

在近一个月的攻关和测试下,SmartPipe软件轴线自动识别算法的性能大幅提升,鲁棒性和稳定性进一步增强。近一年来客户累计反馈的多种复杂管路(包括带有支管管路、带有压瘪段管路、推弯管、装配管、带有复杂孔洞管路等)现在均能够正确…

PySpark(四)PySpark SQL、Catalyst优化器、Spark SQL的执行流程

目录 PySpark SQL 基础 SparkSession对象 DataFrame入门 DataFrame构建 DataFrame代码风格 DSL SQL SparkSQL Shuffle 分区数目 DataFrame数据写出 Spark UDF Catalyst优化器 Spark SQL的执行流程 PySpark SQL 基础 PySpark SQL与Hive的异同 Hive和Spark 均是:“分…

数据挖掘实战-基于决策树算法构建北京市空气质量预测模型

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…

ChatGPT Plus如何升级?信用卡付款失败怎么办?如何使用信用卡升级 ChatGPT Plus?

ChatGPT Plus是OpenAI提供的一种高级服务,它相较于标准版本,提供了更快的响应速度、更强大的功能,并且用户可以优先体验到新推出的功能。 尽管许多用户愿意支付 20 美元的月费来订阅 GPT-4,但在实际支付过程中,特别是…

【面试深度解析】腾讯音乐校招 Java 后端一面:SpringBoot工作机制、缓存雪崩、数据一致性、MySQL索引失效(下)

欢迎关注公众号(通过文章导读关注:【11来了】),及时收到 AI 前沿项目工具及新技术的推送! 在我后台回复 「资料」 可领取编程高频电子书! 在我后台回复「面试」可领取硬核面试笔记! 文章导读地址…

运维自动化bingo前端

项目目录结构介绍 项目创建完成之后,我们会看到bingo_web项目其实是一个文件夹,我们进入到文件夹内部就会发现一些目录和文件,我们简单回顾一下里面的部分核心目录与文件。 ├─node_modules/ # node的包目录,项目运行的依赖包…

【漏洞库】O2OA系统

O2OA invoke 后台远程命令执行漏洞 CNVD-2020-18740 漏洞描述 O2OA是一款开源免费的企业及团队办公平台,提供门户管理、流程管理、信息管理、数据管理四大平台,集工作汇报、项目协作、移动OA、文档分享、流程审批、数据协作等众多功能,满足企业各类管理和协作需求。 O2OA系…

LeetCode:2.两数相加

目录 题目:​编辑2. 两数相加 - 力扣(LeetCode) 分析问题: 官方的优秀代码博主的注释: 博主的辣眼代码,无注释,拉出来拷打自己: 每日表情包: 2. 两数相加 - 力扣&am…

面试经典150题——文本左右对齐(困难)

​"It always seems impossible until it’s done." - Nelson Mandela 1. 题目描述: 这个题目标为困难题目,但是如果我们静下心来把题目读懂了,其实无非就是不同情况下不同考虑而已,也没什么思维上的复杂,还…

Linux openKylin(开放麒麟)系统SSH服务安装配置与公网远程连接

文章目录 前言1. 安装SSH服务2. 本地SSH连接测试3. openKylin安装Cpolar4. 配置 SSH公网地址5. 公网远程SSH连接6. 固定SSH公网地址7. SSH固定地址连接8. 结语 前言 openKylin是中国首个基于Linux 的桌面操作系统开发者平台,通过开放操作系统源代码的方式&#xff…

C++:第十五讲高精度算法

每日C知识 system("color xx);是改变字体及背景颜色,前一个x代表一个数字,可以改变背景颜色,后一个x代表一个数字,可以改变字体颜色 ,但都是根据颜色表来的。 记住:要加头文件:#include&l…

手写分布式存储系统v0.3版本

引言 承接 手写分布式存储系统v0.2版本 ,今天开始新的迭代开发。主要实现 服务发现功能 一、什么是服务发现 由于咱们的服务是分布式的,那从服务管理的角度来看肯定是要有一个机制来知道具体都有哪些实例可以提供服务。举个例子就是,张三家…

DevOps落地笔记-07|案例分析:如何有效管理第三方组件

上一讲主要介绍了如何通过代码预检查的方式提高入库代码的质量,将代码检查尽可能前置,降低修复问题的成本,从而提高交付软件的质量。除了代码本身的问题,依赖组件也是经常困扰开发者的一个问题。比如,依赖组件的某个版…

认识Tomcat (一)

认识Tomcat (一) 一、服务器 1.1 服务器简介 ​ 硬件服务器的构成与一般的PC比较相似,但是服务器在稳定性、安全性、性能等方面都要求更高,因为CPU、芯片组、内存、磁盘系统、网络等硬件和普通PC有所不同。 ​ 软件服务器&…

深度学习(生成式模型)—— Consistency Models

文章目录 前言预备知识:SDE与ODEMethod实验结果 前言 Diffusion model需要多次推断才能生成最终的图像,这将耗费大量的计算资源。前几篇博客我们已经介绍了加速Diffusion model生成图像速率的DDIM和Stable Diffusion,本节将介绍最近大火的Co…

【Matplotlib】figure方法 你真的会了吗!?

🎈个人主页:甜美的江 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:matplotlib 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进…