机器学习本科课程 大作业 多元时间序列预测

1. 问题描述

1.1 阐述问题

对某电力部门的二氧化碳排放量进行回归预测,有如下要求

  • 数据时间跨度从1973年1月到2021年12月,按月份记录。
  • 数据集包括“煤电”,“天然气”,“馏分燃料”等共9个指标的数据(其中早期的部分指标not available)
  • 要求预测从2022年1月开始的半年时间的以下各个部分的排放量

二氧化碳的排放情况具体分为九项指标:

  1. Coal Electric Power Sector CO2 Emissions(煤电力行业二氧化碳排放 )
  2. Natural Gas Electric Power Sector CO2 Emissions(天然气电力行业二氧化碳排放)
  3. Distillate Fuel, Including Kerosene-Type Jet Fuel, Oil Electric Power Sector CO2 Emissions(蒸馏燃料,包括喷气燃料、石油电力行业二氧化碳排放)
  4. Petroleum Coke Electric Power Sector CO2 Emissions(石油焦电力行业二氧化碳排放)
  5. Residual Fuel Oil Electric Power Sector CO2 Emissions(残余燃料油电力行业二氧化碳排放)
  6. Petroleum Electric Power Sector CO2 Emissions(石油电力行业二氧化碳排放)
  7. Geothermal Energy Electric Power Sector CO2 Emissions(地热能电力行业二氧化碳排放)
  8. Non-Biomass Waste Electric Power Sector CO2 Emissions(非生物质废物电力行业二氧化碳排放)
  9. Total Energy Electric Power Sector CO2 Emissions(总能源电力行业二氧化碳排放)

1.2 方案设计

  • 由于9个指标之间存在相关性,对一个指标的未来值进行预测,除了考虑自身的历史值以外,还需要引入其他指标对该指标的影响。
  • 数据量大、时间周期长,需要采用具有较强回归能力的、能够实现时间序列预测任务的机器学习模型。

1.3 方法概括

经过讨论研究,本次实验通过三种神经网络模型独立实现了多元时间序列回归预测任务,分别是:

模型介绍特点
BP误差反向传播网络通过多次学习获取非线性映射
TCN时间卷积网络因果卷积实现时间预测
LSTM长短时记忆网络门控结构保存长时记忆

通过从无到有建立模型、性能优化、模型比较等流程,小组成员强化了机器学习的基础知识,提升了机器学习相应技能的熟练程度,对机器学习的理论和部分模型的特性有了进一步的理解

2. BP神经网络(Backpropagation Neural Network)

2.1 模型原理

BP神经网络是一种前馈神经网络,采用反向传播算法进行训练。该网络由输入层、隐藏层和输出层组成。每个神经元与前一层的所有神经元相连接,每个连接都有一个权重,网络通过调整这些权重来学习输入与输出之间的映射关系。
BP神经网络通过反向传播(Backpropagation)计算模型输出与实际输出之间的误差,然后反向传播误差,调整网络参数以最小化误差。

在本次实验中,采取了500大小的隐藏层,以0.01学习率进行了2000轮的训练。

2.2.1数据处理

从xlsx读取数据,取前80%数据为训练集,后20%为测试集

import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler# 读取xlsx文件
data = pd.read_excel("data.xlsx")
side = 192  # 有缺失部分的长度
side2 = 587  # 整个已知数据的长度
seq_len = 10
batch_size = 64
data = data.iloc[1:side2 + 1]# 提取全部列名
col_names = data.columns.values.tolist()
col_names = [col_names[i] for i in range(1, len(col_names))]
data_list = np.array(data[col_names].values.tolist())# 处理缺失值,用平均值填充
data_list[data_list == "Not Available"] = np.nan
data_list = data_list.astype(float)
imputer = SimpleImputer(strategy='mean', fill_value=np.nan)
data_imputed = imputer.fit_transform(data_list)# 标准化处理
scaler = StandardScaler()
data_normalized = scaler.fit_transform(data_imputed)# 划分训练集和测试集
data_len = len(data_normalized)
train_data = data_normalized[:int(0.75 * data_len)]  # 取前75%作为训练集
test_data = data_normalized[int(0.75 * data_len):]   # 取剩下25%作为测试集

2.3.2 定义画图函数


# 画出曲线
def plot_results(X_test, Y_test, W1, b1, W2, b2, scaler, col_names):Y_pred, _ = forward(X_test, W1, b1, W2, b2)Y_pred_original = scaler.inverse_transform(Y_pred)Y_test_original = scaler.inverse_transform(Y_test)f, ax = plt.subplots(nrows=3, ncols=3, figsize=(20, 10))for i in range(3):for j in range(3):ax[i, j].plot(Y_pred_original[:, 3 * i + j], label='predictions')ax[i, j].plot(Y_test_original[:, 3 * i + j], label='true')ax[i, j].set_title(col_names[3 * i + j])ax[i, j].legend()plt.tight_layout()plt.show()# 绘制Loss曲线
def plot_loss_curve(training_losses, testing_losses):plt.figure(figsize=(10, 6))plt.plot(training_losses, label='Training Loss', color='blue')plt.plot(testing_losses, label='Testing Loss', color='orange')plt.title('Training and Testing Loss Over Epochs')plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend()plt.show()

2.3.3 定义BP神经网络结构

# 参数初始化
def initialize_parameters(input_size, hidden_size, output_size):np.random.seed(42)W1 = np.random.randn(input_size, hidden_size) * 0.01b1 = np.zeros((1, hidden_size))W2 = np.random.randn(hidden_size, output_size) * 0.01b2 = np.zeros((1, output_size))return W1, b1, W2, b2# 前向传播
def forward(X, W1, b1, W2, b2):Z1 = np.dot(X, W1) + b1A1 = np.tanh(Z1)Z2 = np.dot(A1, W2) + b2return Z2, A1# 损失函数
def compute_loss(Y, Y_pred):m = Y.shape[0]loss = np.sum((Y - Y_pred) ** 2) / mreturn loss# 反向传播
def backward(X, A1, Y, Y_pred, W1, W2, b1, b2):m = X.shape[0]dZ2 = Y_pred - YdW2 = np.dot(A1.T, dZ2) / mdb2 = np.sum(dZ2, axis=0, keepdims=True) / mdA1 = np.dot(dZ2, W2.T)dZ1 = dA1 * (1 - np.tanh(A1) ** 2)dW1 = np.dot(X.T, dZ1) / mdb1 = np.sum(dZ1, axis=0, keepdims=True) / mreturn dW1, db1, dW2, db2# 梯度下降更新参数
def update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate):W1 -= learning_rate * dW1b1 -= learning_rate * db1W2 -= learning_rate * dW2b2 -= learning_rate * db2return W1, b1, W2, b2# 训练神经网络
def train_neural_network(X_train, Y_train, X_test, Y_test, input_size, hidden_size, output_size, epochs, learning_rate):W1, b1, W2, b2 = initialize_parameters(input_size, hidden_size, output_size)training_losses = []testing_losses = []start_time = time.time()for epoch in range(epochs):# 前向传播训练集Y_pred_train, A1_train = forward(X_train, W1, b1, W2, b2)# 计算训练集损失train_loss = compute_loss(Y_train, Y_pred_train)training_losses.append(train_loss)# 前向传播测试集Y_pred_test, _ = forward(X_test, W1, b1, W2, b2)# 计算测试集损失test_loss = compute_loss(Y_test, Y_pred_test)testing_losses.append(test_loss)# 反向传播和参数更新dW1, db1, dW2, db2 = backward(X_train, A1_train, Y_train, Y_pred_train, W1, W2, b1, b2)W1, b1, W2, b2 = update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate)# 打印每个epoch的损失print(f"Epoch {epoch + 1}/{epochs} - Training Loss: {train_loss:.10f} - Testing Loss: {test_loss:.10f}")end_time = time.time()training_duration = end_time - start_timeprint(f"用时 {training_duration:.2f} s")# 结束后,画出图像plot_loss_curve(training_losses, testing_losses)plot_results(X_test, Y_test, W1, b1, W2, b2, scaler, col_names)return W1, b1, W2, b2, training_losses, testing_losses

2.3.4 模型训练流程及性能表现

# 将训练数据和测试数据准备为神经网络输入
X_train = train_data[:-seq_len]
Y_train = train_data[seq_len:]
X_test = test_data[:-seq_len]
Y_test = test_data[seq_len:]# 参数设置
input_size = X_train.shape[1]
hidden_size = 500
output_size = Y_train.shape[1]
epochs = 2000
learning_rate = 0.01# 训练神经网络
W1_final, b1_final, W2_final, b2_final, training_losses, testing_losses = train_neural_network(X_train, Y_train, X_test, Y_test, input_size, hidden_size, output_size, epochs, learning_rate)# 在训练完成后,使用训练好的模型对训练集和测试集进行预测
Y_pred_train, _ = forward(X_train, W1_final, b1_final, W2_final, b2_final)
Y_pred_test, _ = forward(X_test, W1_final, b1_final, W2_final, b2_final)# 将预测值逆归一化
Y_pred_train_original = scaler.inverse_transform(Y_pred_train)
Y_pred_test_original = scaler.inverse_transform(Y_pred_test)# 逆归一化训练集和测试集的真实值
Y_train_original = scaler.inverse_transform(Y_train)
Y_test_original = scaler.inverse_transform(Y_test)# 计算 MAE 和 MSE
mse_on_train = np.mean((Y_train_original - Y_pred_train_original) ** 2)
mse_on_test = np.mean((Y_test_original - Y_pred_test_original) ** 2)
mae_on_train = np.mean(np.abs(Y_train_original - Y_pred_train_original))
mae_on_test = np.mean(np.abs(Y_test_original - Y_pred_test_original))# 输出最终的 MAE 和 MSE
print(f"mse_on_train: {mse_on_train:.10f}     mse_on_test: {mse_on_test:.10f}")
print(f"mae_on_train: {mae_on_train:.10f}     mae_on_test: {mae_on_test:.10f}")

3. TCN网络(Temporal Convolutional Network)

3.1 模型原理

TCN是一种基于卷积操作的神经网络,特别适用于处理时序数据。与传统的循环神经网络(RNN)和LSTM相比,TCN使用卷积层捕捉时序数据中的模式,从而更好地捕获长期依赖关系。

从结构上来说,TCN通常由一个或多个卷积层组成,卷积层的感受野逐渐增大,从而能够捕捉不同尺度的模式。此外,TCN还可以通过残差连接来加强梯度的流动,从而更容易训练深层网络。

3.2.1 数据处理

在第一个实验方案中,BP网络直接将整段历史信息输入给了模型;为了更充分地考虑数据集中的时序信息以及加快训练速度,TCN网络和LSTM采取了时间窗口的划分方式。

滑动窗口(rolling window)将时间序列划分为多个窗口,在每个窗口内进行训练和测试,如果存在较大的波动或季节性变化,而且这些变化的周期较长,使用滑动窗口可以更好地捕捉到这些特征。

TCN中,仍然设定前80%为训练数据,时间窗口大小为16

import pandas as pd
import numpy as np
import torch
from torch import optim
from torch.utils.data import Dataset, DataLoader,TensorDataset
import torch.nn as nn
from sklearn.preprocessing import StandardScaler, Normalizer
import matplotlib.pyplot as pltdef windows_split(data, seq_len):res = []label = []for i in range(len(data) - seq_len):res.append(data[i:i + seq_len])label.append(data[i + seq_len])res = np.array(res).astype(np.float32)label = np.array(label).astype(np.float32)return res, labeldata = pd.read_excel("data.xlsx")
side = 192  # 有缺失部分的长度
side2 = 587  # 整个已知数据的长度
seq_len = 16
batch_size = 64# 提取全部列名
col_names = data.columns.values.tolist()
col_names = [col_names[i] for i in range(1, len(col_names))]
data.replace("Not Available", np.nan, inplace=True)interpolated = data[col_names].interpolate(method='spline', order=3)
data_list = np.array(data[col_names].values.tolist())scalar = StandardScaler()
data_list = scalar.fit_transform(data_list)
data_list[np.isnan(data_list)] = 0data_split, label_split = windows_split(data_list[side:side2], seq_len)
data_split = np.transpose(data_split, (0, 2, 1))
length = data_split.shape[0]data_train = torch.Tensor(data_split[0:int(0.8 * length), :])
label_train = torch.Tensor(label_split[0:int(0.8 * length)])
data_test = torch.Tensor(data_split[int(0.8 * length):int(length), :])
label_test = torch.Tensor(label_split[int(0.8 * length):label_split.shape[0]])dataset_train = TensorDataset(data_train, label_train)
dataset_test = TensorDataset(data_test, label_test)train_loader = DataLoader(dataset_train, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset_test, batch_size=batch_size, shuffle=False)input_size = 9
output_size = 9
num_channels = [32, 64, 128, 256]
kernel_size = 3
dropout = 0
num_epochs = 200

3.2.2 模型定义

每层TCN定义为:[conv, chomp, relu, dropout]*2
学习率0.0001,训练轮数200

import torch
import torch.nn as nn
from torch.nn.utils import weight_normclass Chomp1d(nn.Module):def __init__(self, chomp_size):super(Chomp1d, self).__init__()self.chomp_size = chomp_sizedef forward(self, x):return x[:, :, :-self.chomp_size].contiguous()class TemporalBlock(nn.Module):def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):super(TemporalBlock, self).__init__()self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,stride=stride, padding=padding, dilation=dilation))self.chomp1 = Chomp1d(padding)self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(dropout)self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,stride=stride, padding=padding, dilation=dilation))self.chomp2 = Chomp1d(padding)self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(dropout)self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,self.conv2, self.chomp2, self.relu2, self.dropout2)self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else Noneself.relu = nn.ReLU()self.init_weights()def init_weights(self):self.conv1.weight.data.normal_(0, 0.01)self.conv2.weight.data.normal_(0, 0.01)if self.downsample is not None:self.downsample.weight.data.normal_(0, 0.01)def forward(self, x):out = self.net(x)res = x if self.downsample is None else self.downsample(x)return self.relu(out + res)class TemporalConvNet(nn.Module):def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):super(TemporalConvNet, self).__init__()layers = []num_levels = len(num_channels)for i in range(num_levels):dilation_size = 2 ** iin_channels = num_inputs if i == 0 else num_channels[i-1]out_channels = num_channels[i]layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,padding=(kernel_size-1) * dilation_size, dropout=dropout)]self.network = nn.Sequential(*layers)def forward(self, x):return self.network(x)class TCN(nn.Module):def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):super(TCN, self).__init__()self.tcn = TemporalConvNet(input_size, num_channels, kernel_size=kernel_size, dropout=dropout)self.linear = nn.Linear(num_channels[-1], output_size)def forward(self, inputs):"""Inputs have to have dimension (N, C_in, L_in)"""y1 = self.tcn(inputs)  # input should have dimension (N, C, L)o = self.linear(y1[:, :, -1])return o

3.2.3 模型训练流程及性能表现

model = TCN(input_size, output_size, num_channels, kernel_size, dropout)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
criterion = nn.MSELoss()
criterion2 = nn.L1Loss()loss_train_list = []
loss_test_list = []
for i in range(num_epochs):model.train()n = 0loss_total = 0for data, label in train_loader:optimizer.zero_grad()pred = model(data)loss = criterion(pred, label)loss.backward()optimizer.step()n += 1loss_total += loss.item()loss_total /= nloss_train_list.append(loss_total)model.eval()loss_test_total = 0n = 0for data,label in test_loader:with torch.no_grad():pred = model(data)loss = criterion(pred, label)loss_test_total += loss.item()n+=1loss_test_total /= nloss_test_list.append(loss_test_total)print('epoch:{0}/{1}    loss_train:{2}      loss_test:{3}'.format(i + 1, num_epochs, loss_total,loss_test_total))model.eval()
prediction = model(data_test)
prediction = prediction.detach().numpy()
label_test = label_test.detach().numpy()prediction = scalar.inverse_transform(prediction)
label_test = scalar.inverse_transform(label_test)f,ax = plt.subplots(nrows=3,ncols=3,figsize=(10, 10))
for i in range(3):for j in range(3):ax[i,j].plot(prediction[:,3 * i + j],label = 'predictions')ax[i,j].plot(label_test[:,3 * i + j],label = 'true')ax[i,j].set_title(col_names[3 * i + j])ax[i,j].legend()
plt.tight_layout()
plt.show()plt.plot(loss_test_list,label = 'loss_on_test')
plt.plot(loss_train_list,label = 'loss_on_train')
plt.legend()
plt.show()prediction_train = model(data_train)
prediction_train = prediction_train.detach().numpy()
prediction_train = scalar.inverse_transform(prediction_train)
label_train = scalar.inverse_transform(label_train)mse_on_train = criterion(torch.Tensor(prediction_train),torch.Tensor(label_train))
rmse_on_train = torch.sqrt(mse_on_train)
mae_on_train = criterion2(torch.Tensor(prediction_train),torch.Tensor(label_train))mse_on_test = criterion(torch.Tensor(prediction),torch.Tensor(label_test))
rmse_on_test = torch.sqrt(mse_on_test)
mae_on_test = criterion2(torch.Tensor(prediction),torch.Tensor(label_test))print('mse_on_train:{0}     mse_on_test:{1}'.format(mse_on_train,mse_on_test))
print('rmse_on_train:{0}     rmse_on_test:{1}'.format(rmse_on_train,rmse_on_test))
print('mae_on_train:{0}     mae_on_test:{1}'.format(mae_on_train,mae_on_test))# data_split = torch.Tensor(data_split)
# label_split = torch.Tensor(label_split)# prediction_rest = []
# windows = torch.cat((data_split[-1,:,1:],label_split[-1].unsqueeze(1)),dim = 1).unsqueeze(0)
# for i in range(6):
#     pred = model(windows)
#     prediction_rest.append(pred.detach().numpy().squeeze())
#     windows = torch.cat((windows[-1,:,1:],torch.transpose(pred, 0, 1)),dim = 1).unsqueeze(0)# # print(prediction_rest)
# prediction_rest = np.array(prediction_rest)
# prediction_rest = scalar.inverse_transform(prediction_rest)# prediction_total = model(data_split)
# prediction_total = prediction_total.detach().numpy()
# label_split = label_split.detach().numpy()# prediction_total = scalar.inverse_transform(prediction_total)
# label_split = scalar.inverse_transform(label_split)
# f,ax = plt.subplots(nrows=3,ncols=3,figsize=(10, 10))# length = prediction_total.shape[0]
# for i in range(3):
#     for j in range(3):
#         ax[i,j].plot(range(length),prediction_total[:,3 * i + j],label = 'predictions')
#         ax[i,j].plot(range(length),label_split[:,3 * i + j],label = 'true')
#         ax[i,j].plot(range(length,length+6),prediction_rest[:,3 * i + j],label = 'rest')
#         ax[i,j].set_title(col_names[3 * i + j])
#         ax[i,j].legend()
# plt.tight_layout()
# plt.show()

4. LSTM网络

4.1 模型原理

LSTM是一种循环神经网络(RNN)的变体,专门设计用来解决长期依赖问题。LSTM引入了门控机制,包括输入门、遗忘门和输出门,以有效地控制信息的流动。

LSTM中的记忆单元可以保留和读取信息,使其能够更好地处理时序数据中的长期依赖关系。遗忘门可以选择性地遗忘先前的信息,输入门可以添加新的信息,输出门控制输出的信息。

4.2.1 数据处理

此部分与TCN相同,采取前80%为训练数据,后20%为测试集,时间窗口大小为16

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScalerdata = pd.read_excel("data.xlsx")empty = 192  # 有缺失部分的长度
side = 587  # 整个已知数据的长度
seq_len = 10
batch_size = 64# 提取全部列名
col_names = data.columns.values.tolist()
col_names = [col_names[i] for i in range(1, len(col_names))]
for col in col_names:data[col] = pd.to_numeric(data[col], errors='coerce').astype(float)# print(data)
data_list = np.array(data[col_names].values.tolist())
# print(data_list)
data_list = data_list[:data_list.shape[0]-6,:]
# print(data_list)
# print(type(data_list[1][1]))
scaler = StandardScaler()
data_list_scaled = scaler.fit_transform(data_list)
data_scaled = pd.DataFrame(data_list_scaled, columns=col_names)def get_data():return data_list
def get_data_scaled():data_list_scaled[np.isnan(data_list_scaled)] = 0# print(data_list_scaled)return data_list_scaled[192:588], data_list_scaleddef plot(prediction, label_test):plt.figure()f,ax = plt.subplots(nrows=3,ncols=3,figsize=(10, 10))for i in range(3):for j in range(3):ax[i,j].plot(label_test[:,3 * i + j],'b-', label = 'true')ax[i,j].plot(prediction[:,3 * i + j],'r-', label = 'predictions')ax[i,j].set_title(col_names[3 * i + j])ax[i,j].legend()plt.tight_layout()plt.show()def plot_loss(train_loss):plt.figure()plt.xlabel('epoch')plt.ylabel('loss')plt.title('Loss-Rate')temp_list = []for i in range(len(train_loss)):temp_list.append(train_loss[i].to('cpu').detach().numpy())plt.plot([i for i in range(len(train_loss))], temp_list, 'b-', label=u'train_loss')plt.legend() plt.show()def create_sliding_window(data, seq_len, test=False):"""## 创建滑动窗口,生成输入序列和对应的目标值。参数:- data: 输入的时序数据,形状为 (num_samples, num_features)- seq_len: 滑动窗口的大小返回:- X: 输入序列,形状为 (num_samples - seq_len, seq_len, num_features)- y: 目标值,形状为 (num_samples - seq_len, num_features)"""X, y = [], []num_samples, num_features = data.shapefor i in range(num_samples - seq_len):window = data[i : i + seq_len, :]target = data[i + seq_len, :]X.append(window)y.append(target)if test:X.append(X[len(X)-1])return np.array(X), np.array(y)def inverse_scale(data):return scaler.inverse_transform(data)

4.2.2 模型定义

import torch
import torch.nn as nn
import torch.optim as optim
import time
# 定义多层LSTM模型
class myLSTM(nn.Module):def __init__(self, input_size, hidden_size, num_layers=2, output_size=9):super(myLSTM, self).__init__()# self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)self.lstm_layers = nn.ModuleList([nn.LSTM(input_size=input_size if i == 0 else hidden_size,hidden_size=hidden_size,batch_first=True)for i in range(num_layers)])self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):for lstm_layer in self.lstm_layers:x, _ = lstm_layer(x)if len(x.shape) == 3:output = self.fc(x[:, -1, :])  # 取最后一个时间步的输出return outputelse:return xdef train_epoch(model, X_train, y_train, epochs=10, lr=0.001, criterion=nn.MSELoss(), optimizer=None):if optimizer == None:optimizer = optim.Adam(model.parameters(), lr=lr)print(model)# 训练模型train_loss = []t1 = time.time()for epoch in range(epochs):model.train()optimizer.zero_grad()outputs = model(X_train)loss = criterion(outputs, y_train)loss.backward()optimizer.step()train_loss.append(loss)if (epoch + 1) % 5 == 0:print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')if (epoch + 1) % 20 == 0:t2 = time.time()print('当前耗时:{:.2f}s'.format(t2-t1))return train_loss
# X_train 的形状为 (samples, time_steps, features)
# y_train 的形状为 (samples, num_targets)

4.2.3 模型训练及性能表现

相关参数:LSTM层数:3,隐藏层大小:2048,学习率:0.0005,训练轮数:400轮

import torch
import numpy as np
import matplotlib.pyplot as plt
ign_data, _ = get_data_scaled()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = 'cpu'
# ign_data.shape=(396, 9)# 超参数
input_size = 9      # 每个时间步的特征数:9
hidden_size = 2048    # 隐藏层大小
output_size = 9     # 输出特征数
epochs = 400          # 轮数
lr = 0.0005          # learing rate
num_layers = 3
model = myLSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, output_size=output_size).to(device)seq_len = 16         # 暂定窗口为16
X_, y_ = create_sliding_window(ign_data, seq_len=seq_len)split_rate = 0.8
split_idx = X_.shape[0]*split_rate
split_idx = round(split_idx)
# X_train = torch.tensor(X_, dtype=torch.float32)
# y_train = torch.tensor(y_, dtype=torch.float32)
X_train = torch.tensor(X_[:split_idx,:,:], dtype=torch.float32)
y_train = torch.tensor(y_[:split_idx,:], dtype=torch.float32)
X_test = torch.tensor(X_[split_idx:,:,:], dtype=torch.float32)
y_test = torch.tensor(y_[split_idx:,:], dtype=torch.float32)
# X_test = torch.tensor(ign_data[split_idx:,:,:], dtype=torch.float32)
# y_test = torch.tensor(ign_data[split_idx:,:], dtype=torch.float32)
# 训练模型
train_loss = train_epoch(model, X_train.to(device), y_train.to(device), epochs=epochs, lr=lr)
# 保存模型
torch.save(model.state_dict(),'LSTM-hidden2048-3-copy')plot_loss(train_loss)
model.eval()
with torch.no_grad():predictions = model(X_test.to(device))predictions = predictions.to('cpu').numpy()
# print(predictions)plot(prediction=predictions, label_test=y_test.numpy())

5. 实验结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/668537.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

接口测试要测试什么?

一. 什么是接口测试?为什么要做接口测试? 接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换,传递和控制管理过程,以及系统间的相互…

Maven 安装教程

一、安装地址 1.官网安装最新版本 2.其他版本,我这里是maven-3/3.6.2 二、配置环境 1. 点击此电脑鼠标右击->属性->高级系统设置->环境变量 ,配置系统变量->新建:MAVEN_HOME 2.配置path 路径 :%MAVEN_HOME%\bin 三、安…

ChatGPT之制作短视频

引言 今天带来了如何使用 ChatGPT和剪映来制作简单的短视频教程,在这其中 ChatGPT的作用主要是帮我们生成文案,剪映的功能就是根据文案自动生成视频,并配上一些图片、动画、字幕和解说。 ChatGPT生成文案 首先,我们需要使用提示…

Anaconda的安装及其配置

一、简介 Anaconda是一个开源的包、环境管理器,主要具有以下功能和特点: 提供conda包管理工具:可以方便地创建、管理和分享Python环境,用户可以根据自己的需要创建不同的环境,每个环境都可以拥有自己的Python版本、库…

常用排序算法(Java版本)

1 引言 常见的排序算法有八种:交换排序【冒泡排序、快速排序】、插入排序【直接插入排序、希尔排序】、选择排序【简单选择排序、堆排序】、归并排序、基数排序。 2 交换排序 所谓交换,就是序列中任意两个元素进行比较,根据比较结果来交换…

nginx slice模块的使用和源码分析

文章目录 1. 为什么需要ngx_http_slice_module2. 配置指令3. 加载模块4. 源码分析4.1 指令分析4.2 模块初始化4.3 slice模块的上下文4.2 $slice_range字段值获取4.3 http header过滤处理4.4 http body过滤处理5 测试和验证 1. 为什么需要ngx_http_slice_module 顾名思义&#…

程序员为什么不喜欢关电脑,这回答很霸道!

在大家的生活中,经常会发现这样一个现象:程序员经常不关电脑。 至于程序员不关电脑的原因,众说纷纭。 其中这样的一个程序员,他的回答很霸道: “因为我是程序员,我有权选择不关电脑。我需要在任何时候都能够…

C++一维数组

个人主页:PingdiGuo_guo 收录专栏:C干货专栏 铁汁们大家好呀,我是PingdiGuo_guo,今天我们来学习一下数组(一维)。 文章目录 1.数组的概念与思想 2.为什么要使用数组 3.数组的特性 4.数组的操作 1.定义…

0 代码自动化测试:RF 框架实现企业级 UI 自动化测试

前言 现在大家去找工作,反馈回来的基本上自动化测试都是刚需!没有自动化测试技能,纯手工测试基本没有什么市场。 但是很多人怕代码,觉得自动化测试就需要代码!代码学习起来很难! 当然代码学习不难&#xf…

优思学院|精益生产-改变制造业的革命性理念

在今日这个变幻莫测、竞争如潮的市场环境中,企业如同海上的帆船,面临着狂风巨浪的考验。在这样的大背景之下,精益生产(Lean Production)这一理念,宛如一盏明灯,指引着无数企业穿越迷雾&#xff…

安科瑞消防设备电源监控系统在杭后旗医院项目的设计与应用

摘要:本文简述了消防设备电源的组成原理,分析了消防设备电源监控系统在应用中的设计依据和相关规范。通过安科瑞消防设备电源监控系统在杭后旗医院项目的实例介绍,阐述了消防设备电源功能的实现及其重要意义。 关键词:消防设备电…

【jenkins】主从机制及添加Slave节点操作

一、master-slave 日常构建Jenkins任务中,会经常出现下面的情况: 自动化测试需要消耗大量的 CPU 和内存资源,如果服务器上还有其他的服务,可能会造成卡顿或者宕机这样的情况; Jenkins 平台上除了这个项目&#xff0c…

【Linux】解决:为什么重复创建同一个【进程pid会变化,而ppid父进程id不变?】

前言 大家好吖,欢迎来到 YY 滴Linux 系列 ,热烈欢迎! 本章主要内容面向接触过Linux的老铁 主要内容含: 欢迎订阅 YY滴C专栏!更多干货持续更新!以下是传送门! YY的《C》专栏YY的《C11》专栏YY的…

开源软件在技术革新和行业变革中的作用

引言: 在数字化浪潮推动下,开源软件以其独特的魅力重构了软件开发的生态系统,成为技术创新和行业变革的催化剂。它通过低成本、高协作性、极致透明度的特征,成为企业和个人的首选。本文将深度探讨开源软件的影响力,展…

【C++刷题】二叉树的深搜

二叉树的深搜 一、计算布尔二叉树的值1、题目描述2、代码3、解析 二、求根节点到叶节点数字之和1、题目描述2、代码3、解析 三、二叉树剪枝1、题目描述2、代码3、解析 四、验证二叉搜索树1、题目描述2、代码3、解析 五、二叉搜索树中第K小的元素1、题目描述2、代码3、解析 六、…

16.docker删除redis缓存数据、redis常用基本命令

1.进入redis容器内部 (1)筛选过滤出redis容器 docker ps | grep "redis"(2)进入redis容器 #说明:d24为redis容器iddocker exec -it d24 /bin/bash2.登陆redis (1) 进入redis命令行界面 redis-cli说明&a…

重写Sylar基于协程的服务器(7、TcpServer HttpServer的设计与实现)

重写Sylar基于协程的服务器(7、TcpServer & HttpServer的设计与实现) 重写Sylar基于协程的服务器系列: 重写Sylar基于协程的服务器(0、搭建开发环境以及项目框架 || 下载编译简化版Sylar) 重写Sylar基于协程的服务…

CAN通信----(创芯科技)CAN分析仪----转CANTest使用

点击进入官方链接进行下载创芯科技 CAN分析仪资料包: 创芯科技的官网:https://m.zhcxgd.com/ 我使用的是至尊版红色带OBD转接头的: 所有下图是我选择…

MyBatis一些常见知识点!

什么是 ORM 框架? MyBatis 有哪些优缺点? 典型回答: ORM(Object-Relational Mapping,对象关系映射)框架是一种将关系型数据库中的数据 与 应用程序中的对象进行映射的技术。它通过在程序代码中定义的类和属…

c语言--assert断言(详解)

目录 一、断言的概念二、assert断言2.1 代码12.1.1运行结果2.1.2分析 2.2代码22.2.1运行结果2.2.2分析2.3代码32.3.1运行结果及其分析 三、优点四、缺点五、注意 一、断言的概念 assert.h 头⽂件定义了宏 assert() ,用于在运行时确保程序符合指定条件,如…