计算机设计大赛 深度学习 opencv python 公式识别(图像识别 机器视觉)

文章目录

  • 0 前言
  • 1 课题说明
  • 2 效果展示
  • 3 具体实现
  • 4 关键代码实现
  • 5 算法综合效果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的数学公式识别算法实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题说明

手写数学公式识别较传统OCR问题而言,是一个更复杂的二维手写识别问题,其内部复杂的二维空间结构使得其很难被解析,传统方法的识别效果不佳。随着深度学习在各领域的成功应用,基于深度学习的端到端离线数学公式算法,并在公开数据集上较传统方法获得了显著提升,开辟了全新的数学公式识别框架。然而在线手写数学公式识别框架还未被提出,论文TAP则是首个基于深度学习的端到端在线手写数学公式识别模型,且针对数学公式识别的任务特性提出了多种优化。

公式识别是OCR领域一个非常有挑战性的工作,工作的难点在于它是一个二维的数据,因此无法用传统的CRNN进行识别。

在这里插入图片描述

2 效果展示

这里简单的展示一下效果

在这里插入图片描述

在这里插入图片描述

3 具体实现

在这里插入图片描述

神经网络模型是 Seq2Seq + Attention + Beam
Search。Seq2Seq的Encoder是CNN,Decoder是LSTM。Encoder和Decoder之间插入Attention层,具体操作是这样:Encoder到Decoder有个扁平化的过程,Attention就是在这里插入的。具体模型的可视化结果如下

在这里插入图片描述

4 关键代码实现

class Encoder(object):"""Class with a __call__ method that applies convolutions to an image"""def __init__(self, config):self._config = configdef __call__(self, img, dropout):"""Applies convolutions to the imageArgs:img: batch of img, shape = (?, height, width, channels), of type tf.uint8tf.uint8 因为 2^8 = 256,所以元素值区间 [0, 255],线性压缩到 [-1, 1] 上就是 img = (img - 128) / 128Returns:the encoded images, shape = (?, h', w', c')"""with tf.variable_scope("Encoder"):img = tf.cast(img, tf.float32) - 128.img = img / 128.with tf.variable_scope("convolutional_encoder"):# conv + max pool -> /2# 64 个 3*3 filters, strike = (1, 1), output_img.shape = ceil(L/S) = ceil(input/strike) = (H, W)out = tf.layers.conv2d(img, 64, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_1_layer", out)out = tf.layers.max_pooling2d(out, 2, 2, "SAME")# conv + max pool -> /2out = tf.layers.conv2d(out, 128, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_2_layer", out)out = tf.layers.max_pooling2d(out, 2, 2, "SAME")# regular conv -> idout = tf.layers.conv2d(out, 256, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_3_layer", out)out = tf.layers.conv2d(out, 256, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_4_layer", out)if self._config.encoder_cnn == "vanilla":out = tf.layers.max_pooling2d(out, (2, 1), (2, 1), "SAME")out = tf.layers.conv2d(out, 512, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_5_layer", out)if self._config.encoder_cnn == "vanilla":out = tf.layers.max_pooling2d(out, (1, 2), (1, 2), "SAME")if self._config.encoder_cnn == "cnn":# conv with stride /2 (replaces the 2 max pool)out = tf.layers.conv2d(out, 512, (2, 4), 2, "SAME")# convout = tf.layers.conv2d(out, 512, 3, 1, "VALID", activation=tf.nn.relu)image_summary("out_6_layer", out)if self._config.positional_embeddings:# from tensor2tensor lib - positional embeddings# 嵌入位置信息(positional)# 后面将会有一个 flatten 的过程,会丢失掉位置信息,所以现在必须把位置信息嵌入# 嵌入的方法有很多,比如加,乘,缩放等等,这里用 tensor2tensor 的实现out = add_timing_signal_nd(out)image_summary("out_7_layer", out)return out

学长编码的部分采用的是传统的卷积神经网络,该网络主要有6层组成,最终得到[N x H x W x C ]大小的特征。

其中:N表示数据的batch数;W、H表示输出的大小,这里W,H是不固定的,从数据集的输入来看我们的输入为固定的buckets,具体如何解决得到不同解码维度的问题稍后再讲;

C为输入的通道数,这里最后得到的通道数为512。

当我们得到特征图之后,我们需要进行reshape操作对特征图进行扁平化,代码具体操作如下:

N    = tf.shape(img)[0]
H, W = tf.shape(img)[1], tf.shape(img)[2] # image
C    = img.shape[3].value                 # channels
self._img = tf.reshape(img, shape=[N, H*W, C])

当我们在进行解码的时候,我们可以直接运用seq2seq来得到我们想要的结果,这个结果可能无法达到我们的预期。因为这个过程会相应的丢失一些位置信息。

位置信息嵌入(Positional Embeddings)

通过位置信息的嵌入,我不需要增加额外的参数的情况下,通过计算512维的向量来表示该图片的位置信息。具体计算公式如下:

在这里插入图片描述

其中:p为位置信息;f为频率参数。从上式可得,图像中的像素的相对位置信息可由sin()或cos表示。

我们知道,sin(a+b)或cos(a+b)可由cos(a)、sin(a)、cos(b)以及sin(b)等表示。也就是说sin(a+b)或cos(a+b)与cos(a)、sin(a)、cos(b)以及sin(b)线性相关,这也可以看作用像素的相对位置正、余弦信息来等效计算相对位置的信息的嵌入。

这个计算过程在tensor2tensor库中已经实现,下面我们看看代码是怎么进行位置信息嵌入。代码实现位于:/model/components/positional.py。

def add_timing_signal_nd(x, min_timescale=1.0, max_timescale=1.0e4):static_shape = x.get_shape().as_list()  # [20, 14, 14, 512]num_dims = len(static_shape) - 2  # 2channels = tf.shape(x)[-1]  # 512num_timescales = channels // (num_dims * 2)  # 512 // (2*2) = 128log_timescale_increment = (math.log(float(max_timescale) / float(min_timescale)) /(tf.to_float(num_timescales) - 1))  # -0.1 / 127inv_timescales = min_timescale * tf.exp(tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)  # len == 128 计算128个维度方向的频率信息for dim in range(num_dims):  # dim == 0; 1length = tf.shape(x)[dim + 1]  # 14 获取特征图宽/高position = tf.to_float(tf.range(length))  # len == 14 计算x或y方向的位置信息[0,1,2...,13]scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)  # pos = [14, 1], inv = [1, 128], scaled_time = [14, 128] 计算频率信息与位置信息的乘积signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)  # [14, 256] 合并两个方向的位置信息向量prepad = dim * 2 * num_timescales  # 0; 256postpad = channels - (dim + 1) * 2 * num_timescales  # 512-(1;2)*2*128 = 256; 0signal = tf.pad(signal, [[0, 0], [prepad, postpad]])  # [14, 512] 分别在矩阵的上下左右填充0for _ in range(1 + dim):  # 1; 2signal = tf.expand_dims(signal, 0)for _ in range(num_dims - 1 - dim):  # 1, 0signal = tf.expand_dims(signal, -2)x += signal  # [1, 14, 1, 512]; [1, 1, 14, 512]return x

得到公式图片x,y方向的位置信息后,只需要要将其添加到原始特征图像上即可。

5 算法综合效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/667268.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中等题 ------ 链表

文章目录 1. 删除链表中的倒数第N个节点(1)栈(2)双指针(快慢指针) 2. 交换链表中的节点3. 两数相加4. 合并两个链表5. 旋转链表6. 奇偶链表7. 两两交换8. k 个一组翻转链表9. 分割链表10. 分隔链表11. 重排…

19.HarmonyOS App(JAVA)依赖布局DependentLayout使用方法

layout/ability_main.xml 显示位置不对&#xff1a;检查布局文件ohos:lef_of "id:tuzi",比如显示在兔子的左侧&#xff0c;这里就会显示不对。 需要id前没有$符号。改为&#xff1a; ohos:lef_of "$id:tuzi" <?xml version"1.0" encodi…

第六讲:文件操作

第六讲:文件操作 文件夹创建文件夹移动文件夹复制文件夹删除文件夹文件操作文件读取文件写入文件文件夹 创建文件夹 定义创建文件夹函数:chmk_path()定义一个函数 chmk_path(),这个函数的功能是创建文件夹。 首先需要导入操作系统接口模块——os 模块,这个模块中包含某些函…

前端小案例——滚动文本区域(HTML+CSS, 附源码)

一、前言 实现功能: 这个案例实现了一个具有滚动功能的文本区域&#xff0c;用于显示长文本内容&#xff0c;并且可以通过滚动条来查看完整的文本内容。 实现逻辑&#xff1a; 内容布局&#xff1a;在<body>中&#xff0c;使用<div>容器创建了一个类名为listen_t…

5.0 HDFS 集群服务建立教程

HDFS 集群是建立在 Hadoop 集群之上的&#xff0c;由于 HDFS 是 Hadoop 最主要的守护进程&#xff0c;所以 HDFS 集群的配置过程是 Hadoop 集群配置过程的代表。 使用 Docker 可以更加方便地、高效地构建出一个集群环境。 每台计算机中的配置 Hadoop 如何配置集群、不同的计…

【实战系列----消息队列 数据缓存】rabbitmq 消息队列 搭建和应用

线上运行图&#xff0c;更新不算最新版&#xff0c;但可以使用修改线程等补丁功能&#xff0c;建议使用新版本。 远程服务器配置图: 这个可以更具体情况&#xff0c;因为是缓存队列理所当然 内存越大越好&#xff0c;至于核心4核以上足够使用。4核心一样跑 这里主要是需要配置服…

2024美赛数学建模E题思路+代码

文章目录 1 赛题思路2 美赛比赛日期和时间3 赛题类型4 美赛常见数模问题5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 美赛比赛日期和时间 比赛开始时间&#xff1a;北京时间2024年2月2日&#xff08;周五&#xff…

断路精灵:探秘Sentinel熔断策略的神奇效果

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 断路精灵&#xff1a;探秘Sentinel熔断策略的神奇效果 前言熔断策略基础&#xff1a;数字断路精灵的初见熔断策略的基本原理&#xff1a;简单示例演示熔断策略的基本用法&#xff1a; 慢调用比例熔断策…

计算机网络-差错控制(奇偶校验码 CRC循环冗余码)

文章目录 差错从何而来从传感器层面提高信道比来减少线路本身的随机噪声的一个例子热噪声和冲击噪声 数据链路层的差错控制检错编码-奇偶校验码检错编码-CRC循环冗余码例子注意 差错从何而来 噪声通常指的是任何未预期的、随机的信号干扰&#xff0c;这些干扰可能源自多种物理…

linux ln命令-linux软链接、硬链接-linux软、硬链接的区别(一):硬链接

0、序 1、硬链接 1.1、创建硬链接的注意事项 (1)、硬链接不能指向目录&#xff08;不能对目录文件做硬链接&#xff09;。 (2)、硬链接只能在同一个文件系统中创建&#xff0c;不能在不同的文件系统之间做硬链接。就是说&#xff0c;链接文件和被链接文件必须位于同一个文件…

java设计模式:观察者模式

在平常的开发工作中&#xff0c;经常会使用到设计模式。合理的使用设计模式&#xff0c;可以提高开发效率、提高代码质量、提高代码的可拓展性和维护性。今天来聊聊观察者模式。 观察者模式是一种行为型设计模式&#xff0c;用于对象之间一对多的依赖关系&#xff0c;当被观察对…

vue3+threejs+koa可视化项目——模型文件上传(第四步)

文章目录 ⭐前言&#x1f496;往期node系列文章&#x1f496;threejs系列相关文章&#x1f496;vue3threejs系列 ⭐koa后端文件上传(koa-body)&#x1f496;自动创建目录&#x1f496;自定义目录上传&#x1f496;apifox自测上传接口 ⭐vue3前端上传模型文件&#x1f496; axio…

LeetCode --116

116. 填充每个节点的下一个右侧节点指针 给定一个 完美二叉树 &#xff0c;其所有叶子节点都在同一层&#xff0c;每个父节点都有两个子节点。二叉树定义如下&#xff1a; struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针&#xff0c;让…

代码编辑器1.9.0

多线程&#xff01;&#xff01;&#xff01; #include <winsock2.h> #include <windows.h> #include <iostream> #include <stdlib.h> #include <string.h> #include <fstream> #include <conio.h> #include <stdio.h> #incl…

说说RDB和AOF

简介&#xff1a; 众所周知&#xff0c;redis是一个内存数据库&#xff0c;当机器重启后&#xff0c;内存中数据都会丢失。所以redis提供了两种持久化方式&#xff0c;即&#xff1a;RDB(保存一个时间点前的数据)和AOF(保存redis服务器端执行的每一条命令)。 RDB: RDB有两种…

【算法与数据结构】300、674、LeetCode最长递增子序列 最长连续递增序列

文章目录 一、300、最长递增子序列二、674、最长连续递增序列三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、300、最长递增子序列 思路分析&#xff1a; 第一步&#xff0c;动态数组的含义。 d p [ i ] dp[i] dp[i…

程序执行内存区域,堆栈使用及区别

文章目录 一、程序执行内存区域二、堆区详解三、栈内存与堆内存的区别总结 一、程序执行内存区域 **代码区&#xff1a;**当我们的程序被执行时&#xff0c;它会有一个加载准备的过程。其中函数及内部的流程结构代码指令会被放到代码区中&#xff0c;等待着被调用执行。 **常数…

【JS】基于React的Next.js环境配置与示例

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍基于React的Next.js环境配置与示例。 学其所用&#xff0c;用其所学。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下…

【乳腺肿瘤诊断分类及预测】基于自适应SPREAD-PNN概率神经网络

课题名称&#xff1a;基于自适应SPREAD-PNN的乳腺肿瘤诊断分类及预测 版本日期&#xff1a;2023-06-15 运行方式: 直接运行PNN0501.m 文件即可 代码获取方式&#xff1a;私信博主或QQ&#xff1a;491052175 模型描述&#xff1a; 威斯康辛大学医学院经过多年的收集和整理&…

笔记---求组合数

总&#xff1a; ①10w次询问——1 < b < a < 2000——递推求—— N N N2 ②1w次询问——1 < b < a < 105——公式求—— N l o g N NlogN NlogN ③20次询问——1 < b < a < 1018——Lucas定理 ④1次询问——1 < b < a < 5000——拆分质因子…