机器学习 | 解析聚类算法在数据检测中的应用

目录

初识聚类算法

聚类算法实现流程

模型评估

算法优化

特征降维

探究用户对物品类别的喜好细分(实操)


初识聚类算法

聚类算法是一种无监督学习方法,用于将数据集中的对象按照相似性分组。它旨在发现数据中的内在结构和模式,将具有相似特征的数据点聚集到同一组中,并将不同组之间的差异最大化。使用不同的聚类法则,产生的聚类结果也不尽相同:

聚类算法在现实中的应用

1)用户画像,广告推荐,DataSegmentation,搜索引l擎的流量推荐,恶意流量识别

2)基于位置信息的商业推送,新闻聚类,筛选排序

3)图像分割,降维,识别;离群点检测;信用卡异常消费;发掘相同功能的基因片段

聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。

接下来我们随机创建不同二维数据集作为训练集,并结合k-means算法将其聚类,尝试分别聚类不同数量的,并观察聚类效果:

首先我们先导入相关使用的第三方库:

import matplotlib.pyplot as plt
from sklearn.datasets._samples_generator import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import calinski_harabasz_score
# n_clusters:开始的聚类中心数量,省值=8,生成的聚类数,即产生的质心(centroids)数。
# estimator.fit_predict(x): 计算聚类心并预测每个样本属于哪个类别,相当于先调用fitx),然后再调用predict(x)# 创建数据
X, Y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]], cluster_std=[0.4, 0.2, 0.2, 0.2], random_state=9)
# 可视化展示
plt.scatter(X[:, 0], X[:, 1], marker="o")
plt.show()

最终呈现的效果如下所示:

接下来这段代码使用了K-means聚类算法对给定数据集X进行聚类,聚成两个簇:

# KMeans是Scikit-learn库中的K-means聚类算法实现;
# n_clusters=2表示要将数据划分为2个簇;
# n_init=10表示运行算法的次数,以选择最佳结果;
# random_state=9表示随机数生成器的种子,确保结果可以被重复。# kmeans训练 聚类=2
y_pre = KMeans(n_clusters=2, n_init=10, random_state=9).fit_predict(X)
# 可视化展示
plt.scatter(X[:, 0], X[:, 1], c=y_pre)
plt.show()
# 用ch_scale查看最后效果
print(calinski_harabasz_score(X, y_pre))

呈现的效果如下所示:

接下来我们改变聚类中心的数量得到的结果如下所示: 

聚类算法实现流程

根据上面的案例,我们了解到 K-means 聚类步骤如下:

1)随机设置K个特征空间内的点作为初始的聚类中心

2)对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别

3)接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值),如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程:

接下来通过动态图进行演示实现上面的过程:

接下来通过一个案例数据来进行演示:

1)随机设置K个特征空间内的点作为初始的聚类中心(本案例中设置p1和p2):

2)对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别:

3)接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值):

4)如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程【经过判断,需要重复上述步骤,开始新一轮迭代】

5)当每次迭代结果不变时,认为算法收敛,聚类完成,K-Means一定会停下,不可能陷入一直选质心的过程。

K-means聚类实现流程总结

1)事先确定常数K,常数K意味着最终的聚类类别数;

2)随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,

3)接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变,

4)最终就确定了每个样本所属的类别以及每个类的质心。

注意:由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-Means算法的收敛速度比较慢。

K-means聚类算法优缺点

优点:原理简单(靠近中心点),实现容易;聚类效果中上 (依赖K的选择);空间复杂度o(N),时间复杂度o(IKN)

缺点:对离群点,噪声敏感(中心点易偏移);很难发现大小差别很大的簇及进行增量计算;结果不一定是全局最优,只能保证局部最优(与K的个数及初值选取有关)

模型评估

在聚类算法中,模型评估是通过一些内部或外部指标来衡量聚类质量的过程。这些指标可以帮助我们了解聚类模型对数据集的可靠性和有效性。在聚类算法中,有一些常用的模型评估指标,包括SSE(Sum of Squared Errors,误差平方和)、"肘"部法(Elbow Method)、轮廓系数(Silhouette Coefficient,SC)和Calinski-Harabasz指标(CH)。这些指标可以帮助我们选择最佳的聚类数量和评估聚类模型的质量。但需要注意的是,它们仅供参考,具体选择还需结合实际问题和经验。以下是模型评估指数介绍:

SSE:SSE衡量了每个数据点到其所属簇的质心的距离的平方和。SSE越小,表示数据点越接近其所属簇的质心,聚类效果越好。然而,SSE不能直接用于比较不同聚类数量的模型,因为随着聚类数量的增加,SSE通常会减小。

"肘"部法:肘部法是一种通过绘制聚类数量与对应的SSE之间的关系图来选择最佳聚类数量的方法。图形通常呈现出一个弯曲的曲线,在聚类数量逐渐增加时,SSE下降的速度会变缓。选择"肘"部的聚类数量,即找到SSE曲线的拐点,可以认为是最佳的聚类数量。

SC轮廓系数:轮廓系数是一种用于评估聚类结果的紧密度和分离度的指标。它计算每个数据点的轮廓系数,该系数考虑了数据点与其所属簇的距离以及与其他簇的距离。轮廓系数的取值范围在[-1, 1]之间,越接近1表示聚类结果越好。

CH系数:Calinski-Harabasz指标是另一种用于评估聚类结果的指标,它基于簇内方差和簇间方差的比率。较高的Calinski-Harabasz指标表示聚类结果具有较好的紧密度和分离度。

算法优化

通过算法优化,可以改善聚类算法的性能、稳定性和准确性,以更好地发现数据中的结构和模式。以下是几种算法优化的简介:

Canopy算法:将数据点分配到不同的组中,可以有效减少K-means算法计算负担。同时,Canopy算法还可以为K-means算法提供初始质心,并且在保证聚类效果的情况下,可以通过调整T1和T2的值来控制聚类数量。

在给定的所有点中选择其中一个点当作质心,以当前质点为圆心t1为半径画圆,在圆内的点标记为黄色,再以当前质点为圆心t2为半径画圆,把落在圆环内的点加粗,如下:

接下来把圆外的点随机选一个作为圆心继续画圆,操作步骤与上面类似,直到把所有点都包括进去

Canopy算法的优缺点

优点

1)Kmeans对噪声抗干扰较弱,通过Canopy对比,将较小的NumPoint的Cluster直接去掉有利于抗干扰。

2)Canopy选择出来的每个Canopy的centerPoint作为K会更精确。

3)只是针对每个Canopy的内做Kmeans聚类,减少相似计算的数量。

缺点

1)算法中T1、T2的确定问题,依旧可能落入局部最优解

K-means++算法:通过选择合适的初始质心,可以加速K-means算法的收敛速度,减少聚类结果受到初始值的影响,并且在一定程度上提高聚类效果。

如下图中,如果第一个质心选择在圆心,那么最优可能选择到的下一个点在P(A)这个区域(根据颜色进行划分):

二分K-means算法:通过动态地选择聚类数量和质心,可以避免K-means算法陷入局部最优解,并且在一定程度上提高聚类效果。

实现流程:

1)所有点作为一个簇。

2)将该簇一分为二。

3)择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇。

4)以此进行下去,直到簇的数目等于用户给定的数目k为止。

因为聚类的误差平方和能够衡量聚类性能,该值越小表示数据点越接近于他们的质心,聚类效果就越好。所以需要对误差平方和最大的簇进行再一次划分,因为误差平方和越大,表示该簇聚类效果越不好,越有可能是多个簇被当成了一个簇,所以我们首先需要对这个簇进行划分。 

二分K均值算法可以加速K-means算法的执行速度,因为它的相似度计算少了并且不受初始化问题的影响,因为这里不存在随机点的选取,且每一步都保证了误差最小。

K-medoids算法:通过选择代表性对象作为质心,可以避免出现非数据点的质心,从而提高聚类结果的可解释性。同时,选择medoid作为质心可以减少聚类结果受到异常值的影响。

特征降维

特征降维是指通过某种数学变换或算法,将原始数据集中的高维特征转化为低维表示的过程。在机器学习和数据分析中,特征降维可以帮助减少数据集的维度,提取最具代表性的特征,去除冗余信息,并且有助于可视化和理解数据。

降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程:

降维有两种方式 :特征选择和主成分分析(特征提取的方式),以下进行讲解:

特征选择:数据中包含余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。其对应的方法如下:

低方差特征过滤:通过如下代码进行演示:

最终呈现的效果如下:

其相关系数的主要实现方式有 皮尔逊相关系数和斯皮尔曼相关系数:

皮尔逊相关系数:反映变量之间相关关系密切程度的统计指标

其案例实现的代码如下:

from scipy.stats import pearsonrdef pea_demo():# 准备数据x1 = [12.5, 15.3, 23.2, 26.4, 33.5, 34.4, 39.4, 45.2, 55.4, 60.9]x2 = [21.2, 23.9, 32.9, 34.1, 42.5, 43.2, 49.0, 52.8, 59.4, 63.5]# 判断ret = pearsonr(x1, x2)print("皮尔逊相关系数的结果是:\n", ret)pea_demo()

最终呈现的效果如下所示:

斯皮尔曼相关系数:反映变量之间相关关系密切程度的统计指标

其案例实现的代码如下:

from scipy.stats import spearmanrdef pea_demo():# 准备数据x1 = [12.5, 15.3, 23.2, 26.4, 33.5, 34.4, 39.4, 45.2, 55.4, 60.9]x2 = [21.2, 23.9, 32.9, 34.1, 42.5, 43.2, 49.0, 52.8, 59.4, 63.5]# 判断ret = spearmanr(x1, x2)print("斯皮尔曼相关系数的结果是:\n", ret)pea_demo()

最终呈现的效果如下所示:

主成分分析

定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量。

作用:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。

应用:回归分析或者聚类分析当中。

这里拿一个简单的数据进行测试一下:

from sklearn.decomposition import PCAdef pca_demo():data = [[2, 8, 4, 5], [6, 3, 0, 8], [5, 4, 9, 1]]# pca小数保留百分比transfer = PCA(n_components=0.9)trans_data = transfer.fit_transform(data)print("保留0.9的数据最后维度为: \n", trans_data)# pca小数保留百分比transfer = PCA(n_components=3)trans_data = transfer.fit_transform(data)print("保留三列数据最后维度为: \n", trans_data)pca_demo()

最终呈现的效果如下所示:

探究用户对物品类别的喜好细分(实操)

接下来通过kaggle平台中的:竞赛 中的一道题目:应用 PCA 和 K-means 实现用户对物品类别的喜好细分划分,来加强我们聚类算法的学习:

数据集当中对应的数据如下:

根据竞赛提供的信息:

得到的最终结果需求是:

接下来我们开始正式对竞赛题目开始操作,以下是项目操作的具体步骤:

获取数据

数据基本处理

交叉表(Cross Tabulations)是一种常用的分类汇总表格,用于频数分布统计,主要价值在于描述了变量间关系的深刻含义。它可以计算两个(或更多)因子的简单交叉表。默认情况下,它会计算因子的频率表,除非传递了值数组和聚合函数。 

特征工程

机器学习(K-means聚类)

模型评估

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/666853.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL进阶之锁(行锁,间隙锁,临键锁)

行级锁 介绍 行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在 InnoDB存储引擎中。 InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加…

Linux——权限管理

1、ACL权限 在普通权限中,用户对文件只有三种身份,就是属主、属组和其他人;每种用户身份拥有读(read)、写(write)和执行(execute)三种权限。但是在实际工作中&#xff0…

uniapp使用u-popup组件弹窗出现页面还可滑动

*1、问题所在: 弹窗遮罩层出现了页面依旧可以上下滑动 2、要求: 为了用户更好交互体验,弹窗出现后应禁止页面往下滑动 3、实现思路: 在弹窗盒子外层添加个阻止触摸冒泡事件,使用touchmove.stop.prevent 4、代码如下&#xff…

Django学习记录01

1.项目结构 djangoProject02 ├── manage.py 【项目的管理,启动项目、创建app、数据管理】【不要动】【常常用】 └── jangoProject02 ├── __init__.py ├── settings.py 【项目配置】 【常常修改】 ├── urls.py …

软件IIC读取MPU6050

软件IIC读取MPU6050 最终现象一、GY-521 MPU6050三维角度传感器简介二、程序分析1、mpu6050.c2、MPU6050_reg.h 最终现象 一、GY-521 MPU6050三维角度传感器简介 一共八个引脚,一般只用到四个,其余的我也没有试过。 VCC、GND分别接5V电源和地&#xff1b…

如何用ETL工具实现API调用

一、API调用的好处 API调用有很多好处,下面列举了几个主要的优势: 模块化和可重用性:API调用使得软件开发过程更加模块化和可用。通过将功能封装在API中,可以将其用作独立的模块,并在不同的应用程序或系统中进行重复使…

父类之王“Object”类和内部类

👨‍💻作者简介:👨🏻‍🎓告别,今天 📔高质量专栏 :☕java趣味之旅 欢迎🙏点赞🗣️评论📥收藏💓关注 💖衷心的希…

NLP深入学习:《A Survey of Large Language Models》详细学习(一)

文章目录 1. 前言2. 摘要部分3. 引言部分4. Overview 部分4.1 LLMs 背景4.2 GPT 系列模型的技术演变 5. 参考 1. 前言 最近正在读这边 LLM 论文的综述,鉴于读得费劲,如果将整个论文读完再来写会比较费劲。当前采取的策略是部分内容走读记录,…

3 编辑器(Vim)

1.完成 vimtutor。备注:它在一个 80x24(80 列,24 行) 终端窗口看起来效果最好。 2.下载我们提供的 vimrc,然后把它保存到 ~/.vimrc。 通读这个注释详细的文件 (用 Vim!), 然后观察 …

ref和reactive, toRefs的使用

看尤雨溪说:为什么Vue3 中应该使用 Ref 而不是 Reactive? toRefs import { ref, toRefs } from vue;// 定义一个响应式对象 const state ref({count: 0,name: Vue });// 使用toRefs转换为响应式引用对象 const reactiveState toRefs(state);// 现在你…

深入理解TCP网络协议(3)

目录 1.前言 2.流量控制 2.阻塞控制 3.延时应答 4.捎带应答 5.面向字节流 6.缓冲区 7.粘包问题 8.TCP异常情况 9.小结 1.前言 在前面的博客中,我们重点介绍了TCP协议的一些属性,有连接属性的三次握手和四次挥手,还有保证数据安全的重传机制和确认应答,还有为了提高效率…

vue3 之 组合式API—watch函数

watch函数 作用:侦听一个或者多个数据的变化,数据变化时执行回调函数 两个额外参数: 1.immediate(立即执行)2.deep(深度侦听) 场景:比如选择不同的内容请求后端不同数据时 如下图 …

重写Sylar基于协程的服务器(4、协程调度模块的设计)

重写Sylar基于协程的服务器(4、协程调度模块的设计) 重写Sylar基于协程的服务器系列: 重写Sylar基于协程的服务器(0、搭建开发环境以及项目框架 || 下载编译简化版Sylar) 重写Sylar基于协程的服务器(1、日…

华为机考入门python3--(8)牛客8-合并表记录

分类:字典排序 知识点: 将输入转成int的列表 my_list list(map(int, input().strip().split( ))) 将列表转为元组 tuple(my_list) 访问元素为元组的列表 for first, second, third in my_list: 对字典进行排序 sorted(my_dict.items())…

负载均衡下的webshell上传+nginx解析漏洞

负载均衡下的webshell上传 一,负载均衡下webshell上传的四大难点 难点一:需要在每一台节点的相同位置上传相同内容的webshell 我们需要在每一台节点的相同位置都上传相同内容的 WebShell一旦有一台机器上没有,那么在请求轮到这台机器上的时…

处理SERVLET中的错误

处理SERVLET中的错误 问题陈述 一位用户在使用在线计算机应用程序时输入一个非数字字符做数字加法。servlet试图将用户输入的值转换成整数型时,引发了NumberFormException类型的异常。要创建一个Web应用程序来使用自定义错误页面处理该异常。该自定义错误页面需要向用户提供关…

【Linux】Ext2 文件系统

文件系统 前言一、磁盘硬件1. 磁盘的物理存储结构2. 磁盘存储的逻辑抽象结构 二、理解 Ext2 文件系统1. 初步理解文件系统2. 深入理解文件系统(1)inode Table(2)Data blocks(3)inode Bitmap(4&a…

【Vue】2-9、Vue-CLI 脚手架

一、单页面程序 什么是单页面程序? 单页面程序(Single Page Application)简称 SPA,顾名思义,指的是一个 Web 网站中只有唯一一个 HTML 页面,所有的功能与交互都在这唯一的一个页面内完成。 二、Vue-CLI …

万能写作辅助器设计

为了构建一个万能写作辅助器,我们需要设计几个关键组件,每个组件都有其特定的功能和交互方式。以下是这些组件的详细设计和描述: 对话生成器(Dialogue Generator) 功能:生成对话内容。输入:可接受拖拽过来的组件,如角色名称、情感标签、场景描述等。管理:能够管理各种…

【学习笔记】详解换根法(换根DP)

一.换根DP的概念 1.换根DP是什么? 换根DP,又叫二次扫描,是树形DP的一种。 2.换根DP能解决什么问题? 换根DP能解决不指定根结点,并且根节点的变化会对一些值产生影响的问题。例如子结点深度和、点权和等。如果要 暴力…