机器学习系列——(九)决策树

简介

决策树作为机器学习的一种经典算法,在数据挖掘、分类和回归等任务中广泛应用。本文将详细介绍机器学习中的决策树算法,包括其原理、构建过程和应用场景。

原理

决策树是一种基于树状结构的监督学习算法,它通过构建一棵树来对数据进行分类或回归预测。决策树的每个内部节点代表一个特征属性,每个叶子节点代表一个类别或数值。

决策树的构建过程:

  • 特征选择:根据某种指标选择最佳特征,将数据集划分为不同的子集。
  • 决策节点生成:根据选择的特征创建一个决策节点,并将数据集划分到该节点的子节点中。
  • 递归构建:对每个子节点递归执行上述步骤,直到满足停止条件(如达到叶子节点或数据集为空)。

构建算法:

决策树的构建过程中有多种算法可供选择,最常见的是ID3、C4.5和CART算法。

  • ID3(Iterative Dichotomiser 3):ID3算法通过信息增益来选择最佳特征。信息增益表示特征对于分类的贡献程度,选择具有最高信息增益的特征作为节点。
  • C4.5:C4.5算法在ID3算法的基础上进行了改进,使用信息增益比来选择最佳特征。信息增益比考虑到了特征的取值数目对信息增益的影响,避免了偏向取值较多的特征。
  • CART(Classification and Regression Tree):CART算法可以用于分类和回归任务。它通过基尼系数选择最佳特征,并采用二叉树结构构建决策树。

下面是对ID3算法的详细介绍:

  • 熵(Entropy) 在理解ID3算法之前,我们需要先了解熵的概念。熵是信息论中用来衡量系统无序程度的指标。对于一个分类问题,假设有N个样本,其中p个属于类别A,q个属于类别B,则熵可以通过以下公式计算:
Entropy = -p/N * log(p/N) - q/N * log(q/N)

熵越高,表示数据集越无序。

  • 信息增益(Information Gain) 信息增益是指在划分数据集前后熵的减少程度,用来衡量选择某个特征进行划分的好坏程度。信息增益可以通过以下公式计算:
Information Gain = Entropy(D) - ∑(|Di|/|D|) * Entropy(Di)

其中,Entropy(D)是划分前整个数据集的熵,|Di|是划分后第i个子集的样本数,Entropy(Di)是第i个子集的熵。

ID3算法步骤 基于上述概念,下面是ID3算法的步骤:

  • 步骤1:计算初始数据集的熵,作为根节点的熵。
  • 步骤2:对于每个特征,计算其信息增益。
  • 步骤3:选择信息增益最大的特征作为当前节点的划分特征。
  • 步骤4:根据划分特征的每个取值,将数据集划分为不同的子集。
  • 步骤5:对于每个子集,如果所有样本都属于同一类别,则将当前节点标记为叶子节点,类别为该子集中的类别;否则,递归执行步骤2-5。

ID3算法的特点和注意事项

  • 特点:
    • ID3算法倾向于选择具有较多取值的特征,因为这些特征通常具有更高的信息增益。
    • ID3算法在处理缺失值时存在困难,因为它无法处理缺失值的情况。
    • ID3算法容易过拟合,即模型过于复杂而无法泛化到新数据。
  • 注意事项:
    • ID3算法在处理连续特征时需要进行离散化处理。
    • ID3算法对于有噪声和冲突的数据敏感,可能导致错误分类。
    • ID3算法可以通过设置递归终止条件(如达到叶子节点或数据集为空)来避免过拟合。

应用场景

决策树算法在各个领域都有广泛的应用,包括但不限于以下几个方面:

  • 数据挖掘:决策树可以用于发现数据中隐藏的模式和规律,帮助解决分类、聚类等问题。
  • 医学诊断:决策树可以根据患者的症状和检查结果进行分类,辅助医生进行疾病诊断。
  • 金融风险评估:决策树可以根据客户的个人信息和信用记录进行风险评估,帮助银行和金融机构进行信贷决策。
  • 推荐系统:决策树可以根据用户的历史行为和偏好进行推荐,提供个性化的商品或服务推荐。

总结

决策树作为一种简单、直观且易于解释的机器学习算法,具有广泛的应用前景。通过选择合适的特征和构建有效的决策树模型,我们可以从复杂的数据中提取有用的信息,并为决策提供科学依据。随着机器学习领域的不断发展,决策树算法也将继续演化和优化,为各个领域的问题解决提供更加准确和高效的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/666155.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Rust】——基础Hello_world

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…

DBeaver添加阿里maven镜像

1、点击数据库->驱动管理器 2、选择任意数据库,点击编辑按钮 3、点击下载/更新(D) 4、点击下载配置 5、点击添加 6、添加阿里云地址 http://maven.aliyun.com/nexus/content/groups/public/ 7、将阿里云地址移动到首位并点击"应用并关闭"

笔记---容斥原理

AcWing,890.能被整除的数 给定一个整数 n n n 和 m m m 个不同的质数 p 1 , p 2 , … , p m p_{1},p_{2},…,p_{m} p1​,p2​,…,pm​。 请你求出 1 ∼ n 1∼n 1∼n 中能被 p 1 , p 2 , … , p m p_{1},p_{2},…,p_{m} p1​,p2​,…,pm​ 中的至少一个数整除的整数有多少…

【项目日记(八)】第三层: 页缓存的具体实现(下)

💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:项目日记-高并发内存池⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你做项目   🔝🔝 开发环境: Visual Studio 2022 项目日…

LangChain 81 LangGraph 从入门到精通三

LangChain系列文章 LangChain 60 深入理解LangChain 表达式语言23 multiple chains链透传参数 LangChain Expression Language (LCEL)LangChain 61 深入理解LangChain 表达式语言24 multiple chains链透传参数 LangChain Expression Language (LCEL)LangChain 62 深入理解Lang…

低版本MATLAB打开高版本Simulink文件的方法

打开simulink,依次点击“建模”、“环境”、“simulink预设项”,如图所示: 然后在弹出的窗口中,点击“模型文件”,并取消勾选“不要加载用更新版本的simulink创建的模型”,接着点击“应用”即可。如图所示&…

EAK厚膜功率电阻成功在eVTOL大量使用

eVTOL操作的特点是更高的放电曲线,特别是在起飞和着陆期间。 “传统上,电池要么被设计成提供大量能量,要么被设计成高功率,”Cuberg创始人兼首席执行官Richard Wang说。“对于eVTOL电池来说,在能量和功率之间保持良好…

情人节适合送哪些礼物?2024年情人节送礼指南大推荐!

情人节即将来临,这是一年一度表达爱意的时刻。在这个特殊的日子里,送上一份精心挑选的礼物,将会让爱意更加深刻。但是,肯定会有朋友会困惑于选择哪种礼物能够最好地表达您的心意。不用担心,今天小编就为大家精心准备了…

JDK17中的密封类sealed和permits使用指南:什么是Java中的sealed和permits?

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …

FPGA项目(16)——基于FPGA的音乐演奏电路

1.设计要求 能在实验箱上,循环播放一段音乐。(需要源码的直接看最后一节) 2.设计原理 组成乐曲的每个音符的发音频率值及其持续的时间是乐曲能连续演奏所需要的两个基本要素,问题是如何来获取这两个要素所对应的数值以及通过纯硬件…

界面控件DevExpress ASP.NET Spreadsheet组件 - 轻松集成电子表格功能!(一)

DevExpress ASP. NET Spreadsheet组件允许您轻松地将电子表格功能合并到任意ASP. NET应用程序,它可以加载、转换和保存工作簿到XLS-XLSx二进制文件格式,还可以导出和导入XLSX、CSV和TXT文件。 P.S:DevExpress ASP.NET Web Forms Controls拥有…

课时13:变量基础_变量场景

2.1.1 变量场景 学习目标 这一节, 我们从 数据存储、变量场景、小结 三个方面来学习。 数据存储 数据存储 所谓的数据存储,我们从三方面来理解这句话:1、数据保存到哪里 -- 各种媒介,CPU、内存、磁盘、磁带、网盘...2、数据保…

06:原生云K8S解密|K8S集群安装部署|K8S网络插件

原生云K8S解密|K8S集群安装部署|K8S网络插件 K8SK8S集群架构图解 K8S部署仓库初始化kube-master安装计算节点的安装token管理 配置flannel网络(master主机操作) K8S 有大量夸主机的容器需要管理,快速部署应用&#xff…

河西走廊潜在蒸散发时空格局变化与气象因素的关系_马亚丽_2023

河西走廊潜在蒸散发时空格局变化与气象因素的关系_马亚丽_2023 摘要关键词 1 数据与方法1.1 数据来源1.2 变化趋势分析1.3 定性分析方法1.3.1 主成分分析1.3.2 相关系数1.3.3 通径分析 1.4 定量分析方法1.4.1 敏感系数1.4.2 贡献率计算 2 结果与分析2.1 ET0多年变化特征2.1.1 E…

Python绘图工具seaborn,教会你如何绘制更加精美的图形(二)

文章目录 用分类数据绘图1 类别散点图2 类别内的数据分布2.1 绘制箱形图2.2 绘制提琴图 3 类别内的统计估计3.1 绘制条形图3.2 绘制点图 Hello,大家好,我是景天,今天我们探讨下seaborn根据分类数据类绘图的方法 用分类数据绘图 数据集中的数…

【前端模板】bootstrap5实现高端手表网页Chrono(适用电商,附带源码)

一、需求分析 高端手表网页是指专门销售高端手表的在线平台或网站。这些网页旨在向消费者展示和销售高级手表品牌的产品。以下是一些常见的功能: 产品展示:高端手表网页提供详细的产品页面,展示不同品牌和型号的高级手表。这些页面通常包括产…

Vim工具使用全攻略:从入门到精通

引言 在软件开发的世界里,Vim不仅仅是一个文本编辑器,它是一个让你的编程效率倍增的神器。然而,对于新手来说,Vim的学习曲线似乎有些陡峭。本文将手把手教你如何从Vim的新手逐渐变为高手,深入理解Vim的操作模式&#…

Python 数据分析(PYDA)第三版(一)

原文:wesmckinney.com/book/ 译者:飞龙 协议:CC BY-NC-SA 4.0 关于开放版本 第 3 版的《Python 数据分析》现在作为“开放获取”HTML 版本在此网站wesmckinney.com/book上提供,除了通常的印刷和电子书格式。该版本最初于 2022 年…

iOS应用提交上架的最新流程

摘要 本篇博客介绍了iOS应用程序上架的最新流程。包括上架基本需求资料、证书的创建和使用、测试设备的添加、描述文件的创建、打包、审核等步骤。 引言 在开发完iOS应用程序后,我们需要将其提交到App Store上架。然而,随着技术的不断发展,…

11.Ubuntu

目录 1. 什么是Ubuntu 1.1. 概述 1.2. Ubuntu版本简介 1.2.1. 桌面版 1.2.2. 服务器版 2. 部署系统 2.1. 新建虚拟机 2.2. 安装系统 2.3. 部署后的设置 2.3.1. 设置root密码 2.3.2. 关闭防火墙 2.3.3. 启用允许root进行ssh 2.3.4. 安装所需软件 2.3.5. 制作快照 …