NLP入门系列—Attention 机制

NLP入门系列—Attention 机制

Attention 正在被越来越广泛的得到应用。尤其是 [BERT]火爆了之后。

Attention 到底有什么特别之处?他的原理和本质是什么?Attention都有哪些类型?本文将详细讲解Attention的方方面面。

Attention 的本质是什么

Attention(注意力)机制如果浅层的理解,跟他的名字非常匹配。他的核心逻辑就是「从关注全部到关注重点」。

Attention的本质

Attention 机制很像人类看图片的逻辑,当我们看一张图片的时候,我们并没有看清图片的全部内容,而是将注意力集中在了图片的焦点上。大家看一下下面这张图:

我们一定会看清「锦江饭店」4个字,如下图:

视觉焦点在锦江饭店

但是我相信没人会意识到「锦江饭店」上面还有一串「电话号码」,也不会意识到「喜运来大酒家」,如下图:

非视觉焦点容易被忽略

所以,当我们看一张图片的时候,其实是这样的:

人类看图时的效果

上面所说的,我们的视觉系统就是一种 Attention机制,将有限的注意力集中在重点信息上,从而节省资源,快速获得最有效的信息。

AI 领域的 Attention 机制

Attention 机制最早是在计算机视觉里应用的,随后在 NLP 领域也开始应用了,真正发扬光大是在 NLP 领域,因为 2018 年 BERT 和 GPT 的效果出奇的好,进而走红。而 Transformer 和 Attention 这些核心开始被大家重点关注。

如果用图来表达 Attention 的位置大致是下面的样子:

Attention的位置

这里先让大家对 Attention 有一个宏观的概念,下文会对 Attention 机制做更详细的讲解。在这之前,我们先说说为什么要用 Attention。

Attention 的3大优点

之所以要引入 Attention 机制,主要是3个原因:

  1. 参数少
  2. 速度快
  3. 效果好

Attention的3大优点

参数少

模型复杂度跟 CNN、RNN 相比,复杂度更小,参数也更少。所以对算力的要求也就更小。

速度快

Attention 解决了 RNN 不能并行计算的问题。Attention机制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。

效果好

在 Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。

Attention 是挑重点,就算文本比较长,也能从中间抓住重点,不丢失重要的信息。下图红色的预期就是被挑出来的重点。

Attention可以在长文本中抓住重点信息

Attention 的原理

Attention 经常会和 Encoder–Decoder 一起说,下面的动图演示了attention 引入 Encoder-Decoder 框架下,完成机器翻译任务的大致流程。

Attention在Encoder-Decoder框架下的使用

但是,Attention 并不一定要在 Encoder-Decoder 框架下使用的,他是可以脱离 Encoder-Decoder 框架的。

下面的图片则是脱离 Encoder-Decoder 框架后的原理图解。

attention原理图

小故事讲解

上面的图看起来比较抽象,下面用一个例子来解释 attention 的原理:

小故事讲解attention

图书管(source)里有很多书(value),为了方便查找,我们给书做了编号(key)。当我们想要了解漫威(query)的时候,我们就可以看看那些动漫、电影、甚至二战(美国队长)相关的书籍。

为了提高效率,并不是所有的书都会仔细看,针对漫威来说,动漫,电影相关的会看的仔细一些(权重高),但是二战的就只需要简单扫一下即可(权重低)。

当我们全部看完后就对漫威有一个全面的了解了。

Attention 原理的3步分解:

attention原理3步分解

第一步: query 和 key 进行相似度计算,得到权值

第二步:将权值进行归一化,得到直接可用的权重

第三步:将权重和 value 进行加权求和

从上面的建模,我们可以大致感受到 Attention 的思路简单,四个字“带权求和”就可以高度概括,大道至简。做个不太恰当的类比,人类学习一门新语言基本经历四个阶段:死记硬背(通过阅读背诵学习语法练习语感)->提纲挈领(简单对话靠听懂句子中的关键词汇准确理解核心意思)->融会贯通(复杂对话懂得上下文指代、语言背后的联系,具备了举一反三的学习能力)->登峰造极(沉浸地大量练习)。

这也如同attention的发展脉络,RNN 时代是死记硬背的时期,attention 的模型学会了提纲挈领,进化到 transformer,融汇贯通,具备优秀的表达学习能力,再到 GPT、BERT,通过多任务大规模学习积累实战经验,战斗力爆棚。

要回答为什么 attention 这么优秀?是因为它让模型开窍了,懂得了提纲挈领,学会了融会贯通。

想要了解更多技术细节,可以看看下面的文章或者视频:

「文章」深度学习中的注意力机制

「文章」遍地开花的 Attention,你真的懂吗?

「文章」探索 NLP 中的 Attention 注意力机制及 Transformer 详解

「视频」李宏毅 – transformer

「视频」李宏毅 – ELMO、BERT、GPT 讲解

Attention 的 N 种类型

Attention 有很多种不同的类型:Soft Attention、Hard Attention、静态Attention、动态Attention、Self Attention 等等。下面就跟大家解释一下这些不同的 Attention 都有哪些差别。

Attention的种类

由于这篇文章《Attention用于NLP的一些小结》已经总结的很好的,下面就直接引用了:

本节从计算区域、所用信息、结构层次和模型等方面对Attention的形式进行归类。

1. 计算区域

根据Attention的计算区域,可以分成以下几种:

1)Soft Attention,这是比较常见的Attention方式,对所有key求权重概率,每个key都有一个对应的权重,是一种全局的计算方式(也可以叫Global Attention)。这种方式比较理性,参考了所有key的内容,再进行加权。但是计算量可能会比较大一些。

2)Hard Attention,这种方式是直接精准定位到某个key,其余key就都不管了,相当于这个key的概率是1,其余key的概率全部是0。因此这种对齐方式要求很高,要求一步到位,如果没有正确对齐,会带来很大的影响。另一方面,因为不可导,一般需要用强化学习的方法进行训练。(或者使用gumbel softmax之类的)

3)Local Attention,这种方式其实是以上两种方式的一个折中,对一个窗口区域进行计算。先用Hard方式定位到某个地方,以这个点为中心可以得到一个窗口区域,在这个小区域内用Soft方式来算Attention。

2. 所用信息

假设我们要对一段原文计算Attention,这里原文指的是我们要做attention的文本,那么所用信息包括内部信息和外部信息,内部信息指的是原文本身的信息,而外部信息指的是除原文以外的额外信息。

1)General Attention,这种方式利用到了外部信息,常用于需要构建两段文本关系的任务,query一般包含了额外信息,根据外部query对原文进行对齐。

比如在阅读理解任务中,需要构建问题和文章的关联,假设现在baseline是,对问题计算出一个问题向量q,把这个q和所有的文章词向量拼接起来,输入到LSTM中进行建模。那么在这个模型中,文章所有词向量共享同一个问题向量,现在我们想让文章每一步的词向量都有一个不同的问题向量,也就是,在每一步使用文章在该步下的词向量对问题来算attention,这里问题属于原文,文章词向量就属于外部信息。

2)Local Attention,这种方式只使用内部信息,key和value以及query只和输入原文有关,在self attention中,key=value=query。既然没有外部信息,那么在原文中的每个词可以跟该句子中的所有词进行Attention计算,相当于寻找原文内部的关系。

还是举阅读理解任务的例子,上面的baseline中提到,对问题计算出一个向量q,那么这里也可以用上attention,只用问题自身的信息去做attention,而不引入文章信息。

3. 结构层次

结构方面根据是否划分层次关系,分为单层attention,多层attention和多头attention:

1)单层Attention,这是比较普遍的做法,用一个query对一段原文进行一次attention。

2)多层Attention,一般用于文本具有层次关系的模型,假设我们把一个document划分成多个句子,在第一层,我们分别对每个句子使用attention计算出一个句向量(也就是单层attention);在第二层,我们对所有句向量再做attention计算出一个文档向量(也是一个单层attention),最后再用这个文档向量去做任务。

3)多头Attention,这是Attention is All You Need中提到的multi-head attention,用到了多个query对一段原文进行了多次attention,每个query都关注到原文的不同部分,相当于重复做多次单层attention:

img

最后再把这些结果拼接起来:

img

4. 模型方面

从模型上看,Attention一般用在CNN和LSTM上,也可以直接进行纯Attention计算。

1)CNN+Attention

CNN的卷积操作可以提取重要特征,我觉得这也算是Attention的思想,但是CNN的卷积感受视野是局部的,需要通过叠加多层卷积区去扩大视野。另外,Max Pooling直接提取数值最大的特征,也像是hard attention的思想,直接选中某个特征。

CNN上加Attention可以加在这几方面:

a. 在卷积操作前做attention,比如Attention-Based BCNN-1,这个任务是文本蕴含任务需要处理两段文本,同时对两段输入的序列向量进行attention,计算出特征向量,再拼接到原始向量中,作为卷积层的输入。

b. 在卷积操作后做attention,比如Attention-Based BCNN-2,对两段文本的卷积层的输出做attention,作为pooling层的输入。

c. 在pooling层做attention,代替max pooling。比如Attention pooling,首先我们用LSTM学到一个比较好的句向量,作为query,然后用CNN先学习到一个特征矩阵作为key,再用query对key产生权重,进行attention,得到最后的句向量。

2)LSTM+Attention

LSTM内部有Gate机制,其中input gate选择哪些当前信息进行输入,forget gate选择遗忘哪些过去信息,我觉得这算是一定程度的Attention了,而且号称可以解决长期依赖问题,实际上LSTM需要一步一步去捕捉序列信息,在长文本上的表现是会随着step增加而慢慢衰减,难以保留全部的有用信息。

LSTM通常需要得到一个向量,再去做任务,常用方式有:

a. 直接使用最后的hidden state(可能会损失一定的前文信息,难以表达全文)

b. 对所有step下的hidden state进行等权平均(对所有step一视同仁)。

c. Attention机制,对所有step的hidden state进行加权,把注意力集中到整段文本中比较重要的hidden state信息。性能比前面两种要好一点,而方便可视化观察哪些step是重要的,但是要小心过拟合,而且也增加了计算量。

3)纯Attention

Attention is all you need,没有用到CNN/RNN,乍一听也是一股清流了,但是仔细一看,本质上还是一堆向量去计算attention。

5. 相似度计算方式

在做attention的时候,我们需要计算query和某个key的分数(相似度),常用方法有:

1)点乘:最简单的方法, img

2)矩阵相乘: img

3)cos相似度: img

4)串联方式:把q和k拼接起来, img

5)用多层感知机也可以:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/665577.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac M1使用PD虚拟机运行win10弹出“内部版本已过期立即安装新的windows内部版本”

一、问题 内部版本已过期立即安装新的windows内部版本 二、解决 1、如图所示打开zh-CN目录 C:\windows\system32\zh-CN找到licensingui.exe文件 将该文件重命名为licensingui_bak.exe 2、修改完成效果如下 (1)但操作中发现,需要TrustedIns…

闲的无聊,做了几个微信红包封面,才发现好像没啥用,索然无味

这几天闲的无聊,正好也快要过年了,心血来潮搞几个微信红包封面。 折腾了大半天,又是ps,又是开通微信红包封面平台。 弄了100多个图,选出来50个,最后就提交了1个到微信平台,也通过审核了。 最…

【Kafka】服务器Broker与Controller详解

这里写自定义目录标题 Broker概述Broker总体工作流程Broker重要参数 Controller为什么需要Controller具体作用数据服务Leader选举选举流程脑裂问题羊群效应触发leader选举 Broker 概述 Kafka服务实例,负责消息的持久化、中转等功能。一个独立的Kafka 服务器被就是…

vue2 对接 海康摄像头插件 (视频WEB插件 V1.5.2)

前言 海康视频插件v.1.5.2版本运行环境需要安装插件VideoWebPlugin.exe,对浏览器也有兼容性要求,具体看官方文档 对应下载插件 去海康官网下载插件 里面有dome等其他需要用到的 地址: 安装插件 打开下载的文件里的bin文件 安装一下Video…

修改Vim编辑器的缩进和显示行数

一、Vim编辑器的缩进和显示行数 1.指令 sudo vi /etc/vim/vimrc2.插入内容 set tabstop4 set shiftwidth4 set nu 注意输入的格式,前后不要留空格 tabstop是输入按下tab缩进4个 shiftwidth是批量缩进4个 nu是显示行数

革命性的写作:MDX 让你的 Markdown 全面动起来

1. MDX MDX 是一种标记语法,它结合了 Markdown(一种流行的文本到 HTML 的转换工具)和 JSX(React 中用于描述 UI 组件的语法扩展)。MDX 允许你在 Markdown 文档中直接写入 JSX,这意味着你可以在 Markdown 内…

IPv6协议讲解

IPv6协议讲解 IPv6是互联网协议的第六版(Internet Protocol Version 6),它用于在互联网上路由数据包,旨在替代IPv4,它提供了更多的IP地址和改进的网络功能。IPv6是为了应对互联网快速发展带来的挑战而设计的,它的引入不仅解决了地…

【教学类-40-08】A4骰子纸模制作8.0(2.97CM嵌套骰子表格相连 一页7个 油墨打印A4铅画纸)

作品展示(一页7个骰子,表格连在一起,一行一个(2嵌套)) 背景需求: 制作三嵌套盒子并实践后,感觉套起来很紧,还是用2嵌套的铅画纸做骰子比较好, https://blog…

代码随想录算法训练营|day24

第七章 回溯算法 77.组合代码随想录文章详解总结 77.组合 以n5,k3为例 (1)for循环遍历&#xff0c;递归选择符合要求的值加入path&#xff0c;len(path)k时&#xff0c;返回 statrtIndex保证每次递归取到的值不重复 剪枝&#xff1a;i<n-(k-len(path))1 后续需要k-len(pat…

政安晨的AI笔记——示例演绎OpenAI的ChatGPT与DALL·E提示词总原则(并融合创作一副敦煌飞天仙女图)

ChatGPT是由OpenAI开发的一种基于大规模预训练的语言生成模型。它建立在GPT&#xff08;Generative Pre-trained Transformer&#xff09;模型的基础上&#xff0c;通过大量的无监督学习和生成式任务训练来学习语言的概念和模式。 ChatGPT的原理是基于Transformer模型。Transfo…

shell命令以及运行原理 | 权限

Shell命令原理剖析 shell命令以及运行原理&#x1f4a6;Linux权限的概念&#x1f4a6;什么是权限❔Linux下有哪些权限身份❔Linux中文件属性解析 shell命令以及运行原理&#x1f4a6; Linux严格意义上说的是一个操作系统&#xff0c;我们称之为 “核心&#xff08;kernel"…

AS-V1000 视频监控平台产品介绍:客户端功能介绍(一)

目 录 一、引言 1.1 AS-V1000视频监控平台介绍 1.2平台服务器配置说明 二、软件概述 2.1 客户端软件用途 2.2 客户端功能 三、客户端功能说明 3.1 登陆和主界面 3.1.1登陆界面 3.1.2登陆操作 3.1.3主界面 3.1.4资源树 3.2 视频预览 3.2.1视频预览界面 3.2.…

京东微前端框架MicroApp简介

一、MicroApp 1.1 MicroApp简介 MicroApp是由京东前端团队推出的一款微前端框架,它从组件化的思维,基于类WebComponent进行微前端的渲染,旨在降低上手难度、提升工作效率。MicroApp无关技术栈,也不和业务绑定,可以用于任何前端框架。 官网链接:https://micro-zoe.gith…

获取真实 IP 地址(一):判断是否使用 CDN(附链接)

一、介绍 CDN&#xff0c;全称为内容分发网络&#xff08;Content Delivery Network&#xff09;&#xff0c;是一种网络架构&#xff0c;旨在提高用户对于网络上内容的访问速度和性能。CDN通过在全球各地部署分布式服务器节点来存储和分发静态和动态内容&#xff0c;从而减少…

【Linux系统化学习】进程替换

目录 进程程序替换 替换原理 ​编辑替换函数 函数解释 命名理解 函数使用 execl execlp execv execvp 调用其它程序 进程程序替换 替换原理 用fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支),子进程往往要调用一种exec函数以执行另一个…

禁止 ios H5 中 bounces 滑动回弹效果

在开发面向 iOS 设备的 HTML5 应用时&#xff0c;控制页面的滚动行为至关重要&#xff0c;特别是禁用在 Safari 中默认的滑动回弹效果。本文旨在提供一个简洁明了的解决方案&#xff0c;帮助开发者在特定的 Web 应用中禁用这一效果。 1. 什么是滑动回弹效果&#xff1f; 在 iO…

C++输出地址

下面是一段输出地址的程序。 #include <bits/stdc.h> using namespace std;int main() {int s;cout << &s;//原地址return 0; }假如有一个人&#xff08;的朋友&#xff09;后来了&#xff0c;他也想住进的房间&#xff0c;我们可以这样&#xff1a; #includ…

【数据结构】链表OJ面试题2(题库+解析)

1.前言 前五题在这http://t.csdnimg.cn/UeggB 休息一天&#xff0c;今天继续刷题&#xff01; 2.OJ题目训练 1. 编写代码&#xff0c;以给定值x为基准将链表分割成两部分&#xff0c;所有小于x的结点排在大于或等于x的结点之前 。链表分割_牛客题霸_牛客网 思路 既然涉及…

gif动图的裁剪实现思路

项目需求(对app的轮播,以及banner和咨询的图片进行裁剪):前期实现使用用vue-cropper插件对图片进行插件,----后续需求需要裁剪gif动图(vue-cropper、微信自带的截图工具,以及fastStone截图工具,都只能截取静态图片,打开动图时只显示某一帧的静态图片),所以需要研究为什么vue-cr…

机器学习——集成学习

&#x1f4d5;参考&#xff1a;ysu老师课件西瓜书 期末复习笔记 1.集成学习的基本概念 集成学习&#xff08;ensemble learing&#xff09;通过构建并结合多个学习器来完成学习任务。 有时也被称为多分类器系统&#xff08;multi-classifier system&#xff09;、基于委员会的…