【课程作业_01】国科大2023模式识别与机器学习实践作业

国科大2023模式识别与机器学习实践作业

作业内容

从四类方法中选三类方法,从选定的每类方法中
,各选一种具体的方法,从给定的数据集中选一
个数据集(MNIST,CIFAR-10,电信用户流失数据集 )对这三种方法进行测试比较。

  • 第一类方法:: 线性方法:线性SVM、 Logistic Regression
  • 第二类方法: 非线性方法:Kernel SVM, 决策树
  • 第三类方法: 集成学习:Bagging, Boosting
  • 第四类方法: 神经元网络:自选结构

选择数据集

  • MNIST

方法

线性SVM

方法介绍

支持向量机(SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,或者求解其对偶问题。

img

SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。如上图所示, w ⋅ x + b = 0 w \cdot x+b=0 wx+b=0即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知机),但是几何间隔最大的分离超平面却是唯一的。

实验结果

对于每一个参数设置,做了三次实验,得到的模型准确率分别是ACC_1,ACC_2,ACC_3,平均值是ACC_M。

正则参数是正则项前面的系数。

正则参数迭代次数ACC_1ACC_2ACC_3ACC_m
10100086.37%87.57%87.15%87.03%
10200086.9%88.45%86.4%87.25%
50100087.61%86.17%87.77%87.18%
50200086.97%88.02%88.1%87.7%
100100085.67%86.99%86.58%86.41%
100200086.94%86.29%86.84%86.69%
结果分析

从结果可以看出,迭代次数一定时,一定范围内,随着正则参数的增大,模型预测的准确率会上升,但是超过一定范围,模型性能会下降,可能是正则参数过大导致模型欠拟合了。

当正则参数一定时,随着迭代次数的增大,模型的性能会逐渐变好。

决策树

方法介绍

决策树是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。具体来说,它是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树。

构建决策树的基本步骤为:

  • 开始将所有记录看作一个节点
  • 遍历每个变量的每一种分割方式,找到最好的分割点
  • 分割成两个节点N1和N2
  • 对N1和N2分别继续执行2-3步,直到每个节点不能再分。
实验结果

对于每一个参数设置,做了三次实验,得到的模型准确率分别是ACC_1,ACC_2,ACC_3,平均值是ACC_M。

分割类型损失函数ACC_1ACC_2ACC_3ACC_M
bestgini87.61%87.87%88.03%87.84%
bestentropy88.54%88.40%88.38%88.44%
bestlog_loss88.62%88.34%88.42%88.46%
randomgini86.61%87.09%87.01%86.90%
randomentropy87.55%87.82%88.20%87.86%
randomlog_loss87.87%87.79%88.09%87.92%
结果分析

从结果可以看出,当对节点分割时,选取最好的进行分割比随机分割的性能要好,因为可以获得的信息增益最好,而随机选取没有保障。

使用entropy和log_loss的性能比gini要好,而gini代表基尼系数,entropy代表信息增益,因此选择跟信息增益有关的损失更能提高决策树的性能。

神经元网络,使用简单的卷积神经网络

方法介绍

卷积神经网络(CNN),是一种专门用来处理具有类似网格结构的数据的神经网络。卷积网络是指那些至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。

卷积神经网络的基本结构由以下几个部分组成:输入层(input layer),卷积层(convolution layer),池化层(pooling layer),激活函数层和全连接层(full-connection layer)。

  • 卷积层:对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的卷积操作
  • 池化层:池化操作将输入矩阵某一位置相邻区域的总体统计特征作为该位置的输出,主要有平均池化(Average Pooling)、最大池化(Max Pooling)等。简单来说池化就是在该区域上指定一个值来代表整个区域。
  • 激活函数:激活函数(非线性激活函数,如果激活函数使用线性函数的话,那么它的输出还是一个线性函数。)但使用非线性激活函数可以得到非线性的输出值。
  • 全连接层:在全连接层中,每个神经元都与前一层中的所有神经元相连,因此它的输入是一个向量,输出也是一个向量。它对提取的特征进行非线性组合以得到输出。全连接层本身不具有特征提取能力,而是使得目标特征图失去空间拓扑结构,被展开为向量。
实验结果

迭代次数为epoch=10,使用带动量的随机梯度下降(SGD)进行优化,损失函数是交叉熵损失。

使用的卷积神经网络含有两层(含有卷积层,池化层,ReLU激活函数和批归一化层)和一个全连接层,输出的特征维度为10,因为MINIST只有10类。

批处理大小学习率ACC
640.199.03%
640.0198.95%
640.00198.09%
1280.199.16%
1280.0198.95%
1280.00197.35%
1280.0299.02%
1280.00298.12%
结果分析

从结果可以看出,当批处理大小相同时,学习率为0.1时性能最好,之后随着学习率的减小模型的性能逐渐降低。

当学习率一致时,大多数情况下,批处理大小增加模型的性能也会更好,但有些情况不是,如学习率等于0.001时,此时需要将学习率扩大2倍(跟批处理大小增加的倍数一致),模型的性能才会比之前更好。

代码

线性SVM和决策树

# -*- encoding: utf-8 -*-
"""
File machine_learning_methods.py
Created on 2024/1/20 18:55
Copyright (c) 2024/1/20
@author: 
"""
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from load_minist import load_minist_dataif __name__ == '__main__':minist_path = "./datasets/mnist-original.mat"method_type = "linear_svm"X_data, Y_data = load_minist_data(minist_path)# 数据规范化scaler = StandardScaler()X = scaler.fit_transform(X_data)# 分割得到训练和测试数据集X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, test_size=10000, random_state=42)print(f"Train data size:{X_train.shape}")print(f"Test data size:{X_test.shape}")if method_type == "linear_svm":print("Start training Linear SVM...")# 构建linear svm C表示正则项的权重l_svm = svm.LinearSVC(C = 10, max_iter=2000)l_svm.fit(X_train, Y_train)print("Training over!")print("The function is:")print(f"w:{l_svm.coef_}")print(f"b:{l_svm.intercept_}")print("Start testing...")# 打印模型的精确度print(f"{l_svm.score(X_test, Y_test) * 100}%")elif method_type == "kernel_svm":print("Start training Kernel SVM...")# 构建linear svm C表示正则项的权重k_svm = svm.SVC(C=100, max_iter=1000)k_svm.fit(X_train, Y_train)print("Training over!")print("Start testing...")# 打印模型的精确度print(f"{k_svm.score(X_test, Y_test) * 100}%")elif method_type == "decision_tree":print("Start training Decision Tree...")# 构建决策树d_tree = DecisionTreeClassifier(criterion = "gini", splitter = "best")d_tree.fit(X_train, Y_train)print("Training over!")print("Start testing...")# 打印模型的精确度print(f"{d_tree.score(X_test, Y_test) * 100}%")

卷积神经网络

# -*- encoding: utf-8 -*-
"""
File neural_net.py
Created on 2024/1/20 18:55
Copyright (c) 2024/1/20
@author: 
"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms# 设计模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.block1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=10, kernel_size=5),nn.MaxPool2d(kernel_size=2),nn.ReLU(True),nn.BatchNorm2d(10),)self.block2 = nn.Sequential(nn.Conv2d(in_channels=10, out_channels=20, kernel_size=5),nn.MaxPool2d(kernel_size=2),nn.ReLU(True),nn.BatchNorm2d(20),)# 输出10个类别self.fc = nn.Sequential(nn.Flatten(),nn.Linear(in_features=320, out_features=10))def forward(self, x):# x: B C=10 H=12 W=12x = self.block1(x)x = self.block2(x)x = self.fc(x)return xdef construct_data_loader(batch_size):# 数据的归一化transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])# 训练集train_dataset = datasets.MNIST(root='./datasets', train=True, transform=transform, download=True)train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)# 测试集test_dataset = datasets.MNIST(root='./datasets', train=False, transform=transform, download=True)test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)return train_loader, test_loaderdef train_model(train_loader):for (images, target) in train_loader:# images shape: B C=1 H Woutputs = model(images)loss = criterion(outputs, target)optimizer.zero_grad()loss.backward()optimizer.step()def test_model(test_loader):correct, total = 0, 0with torch.no_grad():for (images, target) in test_loader:outputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += target.size(0)correct += (predicted == target).sum().item()print('[%d / %d]: %.2f %% ' % (i + 1, epoch, 100 * correct / total))if __name__ == '__main__':# 定义超参数# 批处理大小batch_size = 128# 学习率lr = 0.002# 动量momentum = 0.5# 训练的epoch数epoch = 10# 构建模型model = Net()# 损失函数和优化器criterion = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)train_loader, test_loader = construct_data_loader(batch_size)for i in range(epoch):# 训练train_model(train_loader)# 测试test_model(test_loader)

参考资料

基于决策树模型和支持向量机模型的手写数字识别_手写数字识别决策树-CSDN博客

ResNet18实现——MNIST手写数字识别(突破0.995)_mnist resnet-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/665411.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【大数据技术攻关专题】「Apache-Flink零基础入门」手把手+零基础带你玩转大数据流式处理引擎Flink(基础加强+运行原理)

手把手零基础带你玩转大数据流式处理引擎Flink(运行机制原理加深) 前提介绍运行Flink应用运行机制Flink的两大核心组件JobManagerTaskManagerTaskSlot Flink分层架构Stateful Stream ProcessingDataStream和DataSetDataStream(数据流&#xf…

GPIO中断

1.EXTI简介 EXTI是External Interrupt的缩写,指外部中断。在嵌入式系统中,外部中断是一种用于处理外部事件的机制。当外部事件发生时(比如按下按钮、传感器信号变化等),外部中断可以立即打断正在执行的程序&#xff0…

大红喜庆版UI猜灯谜小程序源码/猜字谜微信小程序源码

今天给大家带来一款UI比较喜庆的猜灯谜小程序,大家看演示图的时候当然也是可以看得到那界面是多么的喜庆,而且新的一年也很快就来了,所以种种的界面可能都比较往喜庆方面去变吧。 这款小程序搭建是免服务器和域名的,只需要使用微信开发者工具…

Linux一键部署telegraf 实现Grafana Linux 图形展示

influxd2前言 influxd2 是 InfluxDB 2.x 版本的后台进程,是一个开源的时序数据库平台,用于存储、查询和可视化时间序列数据。它提供了一个强大的查询语言和 API,可以快速而轻松地处理大量的高性能时序数据。 telegraf 是一个开源的代理程序,它可以收集、处理和传输各种不…

Linux开发工具

前言:哈喽小伙伴们,经过前边的学习我们已经掌握了Linux的基本指令和权限,相信大家学完这些之后都会对Linux有一个更加深入的认识,但是Linux的学习可以说是从现在才刚刚开始。 这篇文章,我们将讲解若干个Linux的开发工…

Java基础数据结构之Map和Set

Map和Set接口 1.Set集合:独特性与无序性 Set是Java集合框架中的一种,它代表着一组无序且独特的元素。这意味着Set中的元素不会重复,且没有特定的顺序。Set接口有多个实现类,如HashSet、LinkedHashSet和TreeSet。 2.Map集合&…

Redis核心技术与实战【学习笔记】 - 19.Pika:基于SSD实现大容量“Redis”

前言 随着业务数据的增加(比如电商业务中,随着用户规模和商品数量的增加),就需要 Redis 能保存更多的数据。你可能会想到使用 Redis 切片集群,把数据分散保存到不同的实例上。但是这样做的话,如果要保存的…

利用牛顿方法求解非线性方程(MatLab)

一、算法原理 1. 牛顿方法的算法原理 牛顿方法(Newton’s Method),也称为牛顿-拉弗森方法,是一种用于数值求解非线性方程的迭代方法。其基本思想是通过不断迭代来逼近方程的根,具体原理如下: 输入&#…

PCB笔记(二十三):allegro 标注长宽(一般用于测量板宽)时如何显示双单位

步骤:首先选择标注工具,然后右键→Parameters,在弹出来的窗口中√上如下图二所示选项 最终要达到显示单位的效果的话,需要在Text项键入%v%u。 今天就记录到这里啦O

Leetcode206:反转链表

一、题目 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表 示例: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1]输入:head [1,2] 输出:[2,1]输入:head [] 输出&#xff1…

[ESP32 IDF]web server

目录 通过web server控制LED 核心原理解析 分区表 web server的使用 错误Header fields are too long的解决 通过web server控制LED 通过网页控制LED灯的亮灭,一般的ESP32开发板都可以实现,下面这篇文章是国外开发者提供的一个通过web server控制…

13.2K Star,12306 抢票助手帮你回家

Hi,骚年,我是大 G,公众号「GitHub指北」会推荐 GitHub 上有趣有用的项目,一分钟 get 一个优秀的开源项目,挖掘开源的价值,欢迎关注。 马上过年了,今年你在哪里过年?回老家吗&#x…

前端入门第一天

目录 HTML超文本标记语言——Hyper Text Markup Language 标签语法: 双标签: 单标签——只有开始标签,没有结束标签 基本骨架: 标签的关系: 注释: 标题标签:(新闻标题、文章标题、网页区域…

探索设计模式的魅力:为什么你应该了解装饰器模式-代码优化与重构的秘诀

设计模式专栏:http://t.csdnimg.cn/nolNS 开篇 在一个常常需要在不破坏封装的前提下扩展对象功能的编程世界,有一个模式悄无声息地成为了高级编程技术的隐形冠军。我们日复一日地享受着它带来的便利,却往往对其背后的复杂性视而不见。它是怎样…

项目安全-----加密算法实现

目录 对称加密算法 AES (ECB模式) AES(CBC 模式)。 非对称加密 对称加密算法 对称加密算法,是使用相同的密钥进行加密和解密。使用对称加密算法来加密双方的通信的话,双方需要先约定一个密钥,加密方才能加密&#…

C++ 动态规划 线性DP 最长共同子序列

给定两个长度分别为 N 和 M 的字符串 A 和 B ,求既是 A 的子序列又是 B 的子序列的字符串长度最长是多少。 输入格式 第一行包含两个整数 N 和 M 。 第二行包含一个长度为 N 的字符串,表示字符串 A 。 第三行包含一个长度为 M 的字符串,表…

Servlet+Ajax实现对数据的列表展示(极简入门)

目录 1.准备工作 1.数据库源(这里以Mysql为例) 2.映射实体类 3.模拟三层架构(Dao、Service、Controller) Dao接口 Dao实现 Service实现(这里省略Service接口) Controller层(或叫Servlet层…

【blender插件】(1)快速开始

特性 blender的python API有如下特性: 编辑用户界面可以编辑的任意数据(场景,网格,粒子等)。修改用户首选项、键映射和主题。运行自己的配置运行工具。创建用户界面元素,如菜单、标题和面板。创建新的工具。场景交互式工具。创建与Blender集成的新渲染引擎。修改模型的数据…

LeetCode.1686. 石子游戏 VI

题目 题目链接 分析 本题采取贪心的策略 我们先假设只有两个石头a,b, 对于 Alice 价值分别为 a1,a2, 对于 Bob 价值而言价值分别是 b1,b2 第一种方案是 Alice取第一个,Bob 取第二个,Alice与Bob的价值差是 c1 a1 - b1&#xf…