2024年美赛B题:寻找潜水器 Searching for Submersibles 思路模型代码解析

2024年美赛B题:寻找潜水器 Searching for Submersibles 思路模型代码解析

【点击最下方群名片,加入群聊,获取更多思路与代码哦~】

问题翻译

image.png
海上游轮迷你潜艇(MCMS)是一家位于希腊的公司,专门制造能够将人类运送到海洋最深处的潜水器。一艘潜水器被移动到目的地后,就会脱离与母船的牵引而被部署。MCMS现在希望利用他们的潜水器带游客进行探险,探索爱奥尼亚海底的沉船。然而,在他们这样做之前,他们需要赢得监管机构的批准,通过制定安全程序来应对与母船失去联系以及潜水器可能发生的机械故障,包括动力丧失等情况。特别是,他们希望你开发一个模型来预测潜水器随时间的位置。与陆地或海面上的典型搜索和救援不同,有问题的潜水器可能最终定位在海底或水下某一中性浮力点。其位置可能受到洋流、海水不同的密度以及/或海底地形的影响。你的任务包括:
**问题一:定位 **开发一个能够预测潜水器随时间位置的模型。

  • 这些预测所涉及的不确定性是什么?
  • 在事故发生之前,潜水器可以周期性地向母船发送哪些信息来减少这些不确定性?潜水器需要什么样的设备来实现这一点?

问题二:准备 如果需要,您会建议公司在母船上携带哪些额外的搜索设备?您可以考虑不同类型的设备,但必须考虑与设备的可用性、维护、准备就绪和使用相关的成本。如果需要,救援船只可能需要携带哪些额外的设备来提供帮助?
**问题三:搜索 **开发一个模型,该模型将使用您的定位模型的信息,推荐部署的初始点和搜索模式,以最大程度地减少寻找丢失潜水器的时间。确定根据时间和累积搜索结果的情况下找到潜水器的概率。
**问题四:推断 ** 您的模型如何可以扩展以考虑其他旅游目的地,比如加勒比海?您的模型将如何改变以考虑多个潜水器在同一地区移动的情况?

思路解析

问题一:潜水器位置预测问题

  1. 预测不确定性的因素
    • 海洋环境的动态性:海洋中的流动、潮汐和其他环境变化会影响潜水器的运动轨迹。
    • 潜水器自身的稳定性:潜水器的机械系统、动力系统等可能存在的故障或不稳定因素也会影响其位置的准确性。
    • 传感器精度和误差:潜水器上的传感器测量数据可能存在一定的误差,影响位置预测的准确性。
  2. 信息传输减少不确定性的途径
    • 定期传输位置和状态信息:潜水器可以定期向母船发送当前位置、深度、速度、姿态以及系统状态等信息。
    • 使用多传感器数据融合:潜水器可以配备多种传感器,如GPS、惯性导航系统、声纳等,通过数据融合来提高位置预测的准确性。
    • 实时调整预测模型:根据潜水器实时传输的数据,可以动态调整位置预测模型,以适应不同环境和工况下的预测需求。

解题模型:
针对潜水器位置预测问题,可以采用基于动力学模型和环境数据的方法来建立预测模型。以下是一个可能的解题模型的步骤:

  1. 数据采集和处理
    • 收集海洋环境数据:包括海洋流速、潮汐情况、水下地形等。
    • 获取潜水器传感器数据:包括位置、姿态、深度、速度等。
  2. 建立动力学模型
    • 基于潜水器的机械结构和动力系统,建立位置、速度和加速度之间的动力学关系。
    • 考虑外部环境因素对潜水器运动的影响,如海洋流速和水下地形。
  3. 状态估计和预测
    • 使用传感器数据对潜水器的当前状态进行估计,如位置、速度和姿态。
    • 基于动力学模型和当前状态,预测潜水器未来的位置和运动轨迹。
  4. 不确定性建模和优化
    • 对不确定性因素进行建模,如环境变化和传感器误差。
    • 采用优化算法或蒙特卡洛方法对不确定性进行处理,提高位置预测的准确性和可靠性。
  5. 信息传输和实时调整
    • 将预测结果传输给母船,并定期更新。
    • 根据潜水器实时传输的数据,动态调整预测模型参数,以适应不同环境和工况下的位置预测需求。

参考代码:

import numpy as npclass SubmersiblePositionPredictor:def __init__(self, environment_data):self.environment_data = environment_datadef predict_position(self, current_position, current_time):# 根据环境数据和当前位置,预测下一个时间点的位置# 这里可以根据具体情况采用不同的预测方法,比如基于物理模型或机器学习模型predicted_position = current_position + np.random.normal(0, 1, size=3)  # 这里只是一个随机生成的示例return predicted_position# 测试代码
if __name__ == "__main__":# 假设环境数据已经准备好,这里只是一个示例environment_data = {}  # 这里可以包括海洋流速、潮汐情况、水下地形等信息# 创建位置预测器predictor = SubmersiblePositionPredictor(environment_data)# 设置初始位置和时间initial_position = np.array([0, 0, 0])  # 初始位置initial_time = 0  # 初始时间# 模拟预测潜水器位置current_position = initial_positioncurrent_time = initial_timefor _ in range(10):# 预测下一个时间点的位置predicted_position = predictor.predict_position(current_position, current_time)print("Predicted position:", predicted_position)# 更新当前位置和时间current_position = predicted_positioncurrent_time += 1

问题二:如何选择搜索设备和规划布置方式

  1. 确定搜索需求
    • 首先,需要考虑潜水器可能出现的情况,如失联、故障等,以确定搜索的范围和深度。
    • 根据潜水器的特点和可能性的事故情况,确定搜索的区域、时间和深度。
  2. 评估搜索设备
    • 考虑不同类型的搜索设备,如声纳、无人机、水下摄像机等,以及它们的成本、可用性、维护要求和适用性。
    • 对每种设备进行评估,比较其优缺点,选择最适合的设备。
  3. 设备布置规划
    • 根据搜索需求和选择的设备,规划设备在母船上的布置和搭载方式。
    • 确保设备能够快速启动和使用,考虑到母船的空间限制和设备之间的协调。
  4. 救援船只的额外设备
    • 考虑救援船只可能需要的额外设备,如打捞设备、医疗设备、通信设备等,以提供救援支持。

解题模型:

  1. 选择搜索设备模型
    • 基于需求和设备特性,建立搜索设备选择模型,考虑到成本、可用性、维护要求等因素。
    • 根据设备的性能和预算,评估每种设备的适用性,并选择最佳组合。
  2. 设备布置规划模型
    • 建立设备布置规划模型,考虑搜索范围、母船空间、设备协调等因素。
    • 根据搜索需求和设备特性,确定设备在母船上的位置和搭载方式,以确保设备能够有效地工作。
  3. 救援船只额外设备模型
    • 根据救援船只可能遇到的情况,建立额外设备选择模型,考虑到救援效率和成本效益。
    • 根据救援任务和预算限制,选择合适的额外设备,并确保设备能够满足救援需求。

参考代码:

class SearchEquipmentPlanner:def __init__(self, budget):self.budget = budgetdef choose_equipment(self):# 假设有几种搜索设备可供选择,根据预算和需求进行选择available_equipment = ['Side-scan sonar', 'Drones', 'Underwater cameras', 'Diver equipment']# 根据设备的成本和预算进行选择chosen_equipment = []for equipment in available_equipment:equipment_cost = self.get_equipment_cost(equipment)if equipment_cost <= self.budget:chosen_equipment.append(equipment)self.budget -= equipment_costreturn chosen_equipmentdef get_equipment_cost(self, equipment):# 假设根据设备类型来确定成本,实际应用中可以根据具体情况进行调整equipment_costs = {'Side-scan sonar': 5000,'Drones': 10000,'Underwater cameras': 3000,'Diver equipment': 2000}return equipment_costs.get(equipment, 0)# 测试代码
if __name__ == "__main__":# 设定预算budget = 20000# 创建搜索设备规划器planner = SearchEquipmentPlanner(budget)# 选择搜索设备chosen_equipment = planner.choose_equipment()print("Chosen equipment:", chosen_equipment)

问题三:潜水器被找到的概率

  1. 推荐部署的初始点和搜索模式
    • 首先,根据定位模型提供的信息,包括潜水器最后一次通讯的位置、深度、速度等,以及可能的运动趋势,确定潜水器可能的最终位置和方向。
    • 基于可能的最终位置,结合海洋地形和环境,确定可能的搜索区域,并将其划分为更小的子区域或路径。
    • 考虑到搜索效率和资源限制,选择适当的搜索模式,如网格搜索、螺旋搜索或随机搜索,以最大程度地减少寻找丢失潜水器的时间。
  2. 确定潜水器找到的概率
    • 基于时间和累积搜索结果,建立潜水器被找到的概率模型。
    • 考虑到搜索过程中的不确定性和搜索效率,利用统计方法或机器学习技术,估计潜水器在不同时间点被找到的概率。

解题模型:

  1. 推荐部署的初始点和搜索模式模型
    • 使用定位模型的输出作为输入,确定可能的最终位置和运动趋势。
    • 结合海洋地形和环境信息,利用启发式算法(如蚁群算法、遗传算法)或优化算法(如遗传算法、模拟退火算法)选择最佳的部署初始点和搜索模式。
    • 考虑到搜索效率和资源限制,优化搜索路径或部署策略,以减少寻找时间为目标。
  2. 概率模型
    • 使用历史搜索数据和定位模型的输出,建立潜水器被找到的概率模型。
    • 考虑到搜索过程中的不确定性和搜索效率,可以使用贝叶斯统计方法、马尔可夫链蒙特卡洛方法(MCMC)或机器学习技术(如随机森林、神经网络)估计潜水器在不同时间点被找到的概率。

参考代码:

import numpy as npdef estimate_probability_of_finding_submersible(num_simulations, search_efficiency):found_count = 0for _ in range(num_simulations):# 模拟搜索过程,根据搜索效率随机确定是否找到潜水器if np.random.rand() < search_efficiency:found_count += 1# 计算潜水器被找到的概率probability = found_count / num_simulationsreturn probability# 测试代码
if __name__ == "__main__":num_simulations = 1000  # 模拟搜索次数search_efficiency = 0.7  # 搜索效率probability = estimate_probability_of_finding_submersible(num_simulations, search_efficiency)print("Probability of finding the submersible:", probability)

问题四:如何修改定位模型和搜索模型

  1. 考虑其他旅游目的地
    • 收集目标地点的海洋环境数据,包括海洋流速、潮汐情况、水下地形等。
    • 调整模型参数或重新训练模型,以适应新目的地的海洋条件。
    • 根据目标地点的特点,可能需要修改定位模型和搜索模型,以更好地适应新环境。
  2. 考虑多个潜水器在同一地区移动
    • 修改定位模型,使其能够同时处理多个潜水器的位置信息。
    • 考虑潜水器之间的交互作用,如避免碰撞和协调移动。
    • 更新搜索模型,以考虑多个潜水器的位置和可能的目标位置,以及它们之间的协作和竞争。

解题模型:

  1. 扩展模型以考虑其他旅游目的地
    • 考虑到新目的地的海洋环境数据,可能需要重新训练模型或调整模型参数。
    • 根据新的环境数据,修改定位模型和搜索模型,以适应不同目的地的海洋条件。
  2. 改变模型以考虑多个潜水器移动
    • 修改定位模型,以处理多个潜水器的位置信息,并考虑它们之间的相互影响。
    • 更新搜索模型,以考虑多个潜水器在同一地区移动的情况,可能需要采用协作搜索或竞争搜索策略。

参考代码:

class MultiSubmersiblePositionPredictor:def __init__(self, environment_data):self.environment_data = environment_datadef predict_position(self, current_positions, current_time):predicted_positions = []for current_position in current_positions:# 根据环境数据和当前位置,预测下一个时间点的位置# 这里可以根据具体情况采用不同的预测方法,比如基于物理模型或机器学习模型predicted_position = current_position + np.random.normal(0, 1, size=3)  # 这里只是一个随机生成的示例predicted_positions.append(predicted_position)return predicted_positions# 测试代码
if __name__ == "__main__":# 假设环境数据已经准备好,这里只是一个示例environment_data = {}  # 这里可以包括海洋流速、潮汐情况、水下地形等信息# 创建多潜水器位置预测器predictor = MultiSubmersiblePositionPredictor(environment_data)# 设置初始位置和时间initial_positions = [np.array([0, 0, 0]), np.array([1, 1, 1])]  # 初始位置initial_time = 0  # 初始时间# 模拟预测潜水器位置current_positions = initial_positionscurrent_time = initial_timefor _ in range(10):# 预测下一个时间点的位置predicted_positions = predictor.predict_position(current_positions, current_time)print("Predicted positions:", predicted_positions)# 更新当前位置和时间current_positions = predicted_positionscurrent_time += 1

【点击下方群名片,加入群聊,获取更多思路与代码哦~】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/664001.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在Windows部署GoLand并通过SSH远程连接Linux服务器

文章目录 1. 安装配置GoLand2. 服务器开启SSH服务3. GoLand本地服务器远程连接测试4. 安装cpolar内网穿透远程访问服务器端4.1 服务器端安装cpolar4.2 创建远程连接公网地址 5. 使用固定TCP地址远程开发 本文主要介绍使用GoLand通过SSH远程连接服务器&#xff0c;并结合cpolar内…

Vue 环境准备

1.安装vscode https://code.visualstudio.com/ 2.安装开发vue所需插件&#xff1a; Vetur —— 语法高亮、智能感知、Emmet等 包含格式化功能&#xff0c; AltShiftF &#xff08;格式化全文&#xff09;&#xff0c;CtrlK CtrlF&#xff08;格式化选中 代码&#xff0c;两…

在 Elastic Agent 中为 Logstash 输出配置 SSL/TLS

要将数据从 Elastic Agent 安全地发送到 Logstash&#xff0c;你需要配置传输层安全性 (TLS)。 使用 TLS 可确保你的 Elastic Agent 将加密数据发送到受信任的 Logstash 服务器&#xff0c;并且你的 Logstash 服务器从受信任的 Elastic Agent 客户端接收数据。 先决条件 确保你…

防御保护 防火墙的双机热备和带宽管理实验

需求&#xff1a; 办公区设备可以通过电信和移动链路上网&#xff08;多对多的NAT&#xff0c;并需要保留一个公网IP不能用来转换&#xff09;分公司设备可以通过总公司的移动和电信链路访问DMZ区的http服务器分公司内部的客户端可以通过公网地址访问到内部的服务器FW1和FW4组…

Unity | YooAssetV2.1.0 + HybridCLR热更新

目录 一、项目更改 二、使用YooAsset热更 1.资源配置 2.资源构建 3.将两个文件夹下的资源上传CDN服务器 4.修改代码 5.运行效果 本文记录利用YooAssetHybridCLR来进行资源和dll的更新。YooAsset使用的是新版V2.1.0。相比于旧版&#xff0c;dll(原生文件)和资源要建两个p…

AI-数学-高中-18-三角函数-同角三角函数关系及计算

原作者视频&#xff1a;三角函数】5同角三角函数关系&#xff08;易中档&#xff09;_哔哩哔哩_bilibili 辅助三角形&#xff08;计算速度快&#xff09;&#xff1a;1.画一个辅助计算的任意直接三角形&#xff1b;2.利用初中方法先计算sin、cos、tan值&#xff1b;3.看象限确定…

Python机器学习:样本划分之验证集法

评估机器学习模型优劣的标准是模型的泛化能力&#xff0c;所以关注的应该是泛化误差而不是经验误差&#xff0c;一味追求经验误差的降低&#xff0c;就会导致模型“过拟合”现象。但是泛化误差是难以直接观察到的&#xff0c;我们应该如何选择泛化能力比较好的模型呢&#xff1…

蓝桥杯---垒骰子

赌圣atm晚年迷恋上了垒骰子&#xff0c;就是把骰子一个垒在另一个上边&#xff0c;不能歪歪扭扭&#xff0c;要垒成方柱体。经过长期观察&#xff0c;atm 发现了稳定骰子的奥秘&#xff1a;有些数字的面贴着会互相排斥&#xff01;我们先来规范一下骰子&#xff1a;1的对面是4&…

【Docker篇】Linux安装Docker、docker安装mysql、redis、rabbitmq

1.Linux安装docker 官方帮助文档&#xff1a;Install Docker Engine on CentOS | Docker Docs 1.1安装命令 # 1. 卸载之前的dockersudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate…

RK3568平台 安卓hal3适配usb camera

一.RK安卓hal3 camera框架 Camera hal3 在 android 框架中所处的位置如上图&#xff0c; 对上&#xff0c;主要实现 Framework 一整套 API 接口&#xff0c;响应其 控制命令&#xff0c;返回数据与控制参数结果。 对下&#xff0c; 主要是通 V4l2 框架实现与 kernel 的交互。3a…

linux 下mongodb7版本怎么连?

概述&#xff1a;linux下的mongodb7版本默认是没有安装客户端的&#xff0c;需要下载shell客户端才能连&#xff0c;下载之后解压&#xff0c;不需要编译&#xff0c;进入bin目录就能自己运行&#xff0c;。 安装&#xff1a; linux 下mongodb7版本没有安装客户端需要当地下载…

Java:你还在想着考虑使用 tess4j 做文字识别吗?给你看看我的一点实践

需求&#xff1a;删除带有图片水印的图片 语言也设置为中文了&#xff0c;最后给我识别的文字是这样的 | AT V ! w{)" . ) ,/ R Ko 87 ’ 我能理解&#xff0c;毕竟图片很大张&#xff0c;不过不用担心&#xff0c;因为这个水印很有规律&#xff0c;就在右下方裁剪出宽 1…

基于单片机的智能燃气灶控制系统设计

摘要&#xff1a;针对传统燃气灶存在不能防干烧、不能进行温度检测、不能进行火力自动调节等问题&#xff0c;设计了一种基于单片机控制的智能燃气灶&#xff0c;它通过单片机进行控制&#xff0c;由开关模块、测温模块、语音播报模块、火力控制模块和防空烧模块五个模块组成&a…

django+flask+python高校教材管理系统47nia

本.4论文结构 绪论&#xff1a;剖析项目可行性&#xff0c;表明研究方向。 开发技术&#xff1a;系统关键运用了Python技术性、Django框架、B/S架构和myspl数据库查询&#xff0c;并进行了详细介绍[6]。 系统分析&#xff1a;包含系统的总体构造&#xff0c;用例图和结构图。 系…

故障诊断 | 一文解决,CNN-LSTM卷积神经网络-长短期记忆神经网络组合模型的故障诊断(Matlab)

效果一览 文章概述 故障诊断 | 一文解决,CNN-LSTM卷积神经网络-长短期记忆神经网络组合模型的故障诊断(Matlab) 模型描述 CNN-LSTM模型是一种结合了卷积神经网络(Convolutional Neural Network)和长短期记忆神经网络(Long Short-Term Memory)的组合模型,常用于数据故障…

《动手学深度学习(PyTorch版)》笔记6.3

注&#xff1a;书中对代码的讲解并不详细&#xff0c;本文对很多细节做了详细注释。另外&#xff0c;书上的源代码是在Jupyter Notebook上运行的&#xff0c;较为分散&#xff0c;本文将代码集中起来&#xff0c;并加以完善&#xff0c;全部用vscode在python 3.9.18下测试通过&…

Python实现PDF到HTML的转换

PDF文件是共享和分发文档的常用选择&#xff0c;但提取和再利用PDF文件中的内容可能会非常麻烦。而利用Python将PDF文件转换为HTML是解决此问题的理想方案之一&#xff0c;这样做可以增强文档可访问性&#xff0c;使文档可搜索&#xff0c;同时增强文档在不同场景中的实用性。此…

后端——go系统学习笔记(不断更新中......)

数组 固定大小 初始化 arr1 : [3]int{1, 2, 3} arr2 : [...]int{1, 2, 3} var arr3 []int var arr4 [4]int切片 长度是动态的 初始化 arr[0:3] slice : []int{1,2,3} slice : make([]int, 10)len和cap len是获取切片、数组、字符串的长度——元素的个数cap是获取切片的容量—…

深度学习入门笔记(七)卷积神经网络CNN

我们先来总结一下人类识别物体的方法: 定位。这一步对于人眼来说是一个很自然的过程,因为当你去识别图标的时候,你就已经把你的目光放在了图标上。虽然这个行为不是很难,但是很重要。看线条。有没有文字,形状是方的圆的,还是长的短的等等。看细节。纹理、颜色、方向等。卷…

Java正则表达式之Pattern和Matcher

目录 前言一、Pattern和Matcher的简单使用二、Pattern详解2.1 Pattern 常用方法2.1.1 compile(String regex)2.1.2 matches(String regex, CharSequence input)2.1.3 split(CharSequence input)2.1.4 pattern()2.1.5 matcher(CharSequence input) 三、Matcher详解3.1 Matcher 常…