【Java 数据结构】排序

排序算法

  • 1. 排序的概念及引用
    • 1.1 排序的概念
    • 1.2 常见的排序算法
  • 2. 常见排序算法的实现
    • 2.1 插入排序
      • 2.1.1 直接插入排序
      • 2.1.2 希尔排序( 缩小增量排序 )
    • 2.2 选择排序
      • 2.2.1 直接选择排序
      • 2.2.2 堆排序
    • 2.3 交换排序
      • 2.3.1冒泡排序
      • 2.3.2 快速排序
      • 2.3.3 快速排序非递归
    • 2.4 归并排序
  • 3. 排序算法复杂度及稳定性分析

1. 排序的概念及引用

1.1 排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

内部排序:数据元素全部放在内存中的排序

外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。
在这里插入图片描述

1.2 常见的排序算法

在这里插入图片描述

2. 常见排序算法的实现

2.1 插入排序

基本思想

直接插入排序是一种简单的插入排序法,其基本思想是:

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。实际中我们玩扑克牌时,就用了插入排序的思想。
在这里插入图片描述

2.1.1 直接插入排序

当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-
1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移

直接插入排序的特性总结
1. 元素集合越接近有序,直接插入排序算法的时间效率越高
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1),它是一种稳定的排序算法
4. 稳定性:稳定

public static void insertSort(int[] array) {for (int i = 1; i < array.length; i++) {int tmp = array[i];int j = i-1;for (; j >= 0 ; j--) {//这里加不加等号  和稳定有关系// 但是:本身就是一个稳定的排序 可以实现为不稳定的排序// 但是 本身就是一个不稳定的排序 是不可能变成一个稳定的排序的if(array[j] > tmp) {array[j+1] = array[j];}else {//array[j+1] = tmp;break;}}array[j+1] = tmp;}}

2.1.2 希尔排序( 缩小增量排序 )

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成多个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序
在这里插入图片描述
希尔排序的特性总结

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很
    快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些书中给出的希尔排
    序的时间复杂度都不固定:
  4. 稳定性:不稳定
   //希尔排序public static void shellSort(int[] array) {int gap = array.length;while (gap > 1) {gap /= 2;shell(array,gap);}}/*** 对每组进行插入排序* @param array* @param gap*/public static void shell(int[] array,int gap) {for (int i = gap; i < array.length; i++) {int tmp = array[i];int j = i-gap;for (; j >= 0 ; j-=gap) {//这里加不加等号  和稳定有关系// 但是:本身就是一个稳定的排序 可以实现为不稳定的排序// 但是 本身就是一个不稳定的排序 是不可能变成一个稳定的排序的if(array[j] > tmp) {array[j+gap] = array[j];}else {//array[j+1] = tmp;break;}}array[j+gap] = tmp;}}

2.2 选择排序

基本思想

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

2.2.1 直接选择排序

  • 在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
  • 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
  • 在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素

【直接选择排序的特性总结】

  1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定
/*** 选择排序:* 时间复杂度:O(n^2)* 空间复杂度:O(1)* 稳定性:不稳定的排序* @param array*/public static void selectSort(int[] array) {for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i+1; j < array.length; j++) {if(array[j] < array[minIndex]) {minIndex = j;}}swap(array,i,minIndex);}}

2.2.2 堆排序

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆
来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆

private static void createHeap(int[] array) {for (int parent = (array.length-1-1)/2; parent >= 0 ; parent--) {siftDown(array,parent,array.length);//alt+enter}}private static void siftDown(int[] array,int parent, int length) {int child = 2*parent + 1;while (child < length) {if(child+1 < length && array[child] < array[child+1]) {child++;}if(array[child] > array[parent]) {swap(array,child,parent);parent = child;child = 2*parent+1;}else {break;}}}/*** 时间复杂度:O(N*logN)* 空间复杂度:O(1)* 稳定性:不稳定的排序* @param array*/public static void heapSort(int[] array) {createHeap(array);int end = array.length-1;while (end > 0) {swap(array,0,end);siftDown(array,0,end);end--;}}

2.3 交换排序

基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

2.3.1冒泡排序

【冒泡排序的特性总结】

  1. 冒泡排序是一种非常容易理解的排序
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:稳定
/*** 时间复杂度:O(N^2)*    如果加了优化:最好情况下 可以达到O(n)* 空间复杂度:O(1)* 稳定性:稳定的排序** 优化:*   每一趟都需要判断 上一趟 有没有交换* @param array*/public static void bubbleSort(int[] array) {//i代表的是趟数for (int i = 0; i < array.length-1; i++) {boolean flg = false;//j来比较 每个数据的大小for (int j = 0; j < array.length-1-i; j++) {if(array[j] > array[j+1]) {swap(array,j,j+1);flg = true;}}if(!flg) {break;}}}

2.3.2 快速排序

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止

void QuickSort(int[] array, int left, int right){if(right - left <= 1)return;// 按照基准值对array数组的 [left, right)区间中的元素进行划分int div = partion(array, left, right);// 划分成功后以div为边界形成了左右两部分 [left, div) 和 [div+1, right)// 递归排[left, div)QuickSort(array, left, div);// 递归排[div+1, right)QuickSort(array, div+1, right);}

上述为快速排序递归实现的主框架,发现与二叉树前序遍历规则非常像,同学们在写递归框架时可想想二叉树前序遍历规则即可快速写出来,后序只需分析如何按照基准值来对区间中数据进行划分的方式即可。
将区间按照基准值划分为左右两半部分的常见方式有:

  1. Hoare版
private static int partition(int[] array, int left, int right) {int i = left;int j = right;int pivot = array[left];while (i < j) {while (i < j && array[j] >= pivot) {j--;}while (i < j && array[i] <= pivot) {i++;}swap(array, i, j);}swap(array, i, left);return i;
}
  1. 挖坑法
private static int partition(int[] array, int left, int right) {int i = left;int j = right;int pivot = array[left];while (i < j) {while (i < j && array[j] >= pivot) {j--;}array[i] = array[j];while (i < j && array[i] <= pivot) {i++;}array[j] = array[i];}array[i] = pivot;return i;}
  1. 前后指针
private static int partition(int[] array, int left, int right) {int prev = left ;int cur = left+1;while (cur <= right) {if(array[cur] < array[left] && array[++prev] != array[cur]) {swap(array,cur,prev);}cur++;}swap(array,prev,left);return prev;}

2.3.3 快速排序非递归

void quickSortNonR(int[] a, int left, int right) {Stack<Integer> st = new Stack<>();st.push(left);st.push(right);while (!st.empty()) {right = st.pop();left = st.pop();if(right - left <= 1)continue;int div = PartSort1(a, left, right);// 以基准值为分割点,形成左右两部分:[left, div) 和 [div+1, right)st.push(div+1);st.push(right);st.push(left);st.push(div);}}

快速排序总结

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(logN)
  4. 稳定性:不稳定

2.4 归并排序

基本思想

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and
Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:
在这里插入图片描述

    /*** 时间复杂度:O(N*logN)* 空间复杂度:O(logN)* 稳定性:稳定的排序* 目前为止3个稳定的排序:直接插入排序、冒泡排序、归并排序* @param array*/public static void mergeSort(int[] array) {mergeSortFun(array,0,array.length-1);}private static void mergeSortFun(int[] array,int start,int end) {if(start >= end) {return;}int mid = (start+end)/2;mergeSortFun(array,start,mid);mergeSortFun(array,mid+1,end);//合并merge(array,start,mid,end);}private static void merge(int[] array, int left, int mid, int right) {int s1 = left;//可以不定义,这样写为了好理解int e1 = mid;//可以不定义,这样写为了好理解int s2 = mid+1;int e2 = right;//可以不定义,这样写为了好理解//定义一个新的数组int[] tmpArr = new int[right-left+1];int k = 0;//tmpArr数组的下标//同时满足 证明两个归并段 都有数据while (s1 <= e1 && s2 <= e2) {if(array[s1] <= array[s2]) {tmpArr[k++] = array[s1++];}else {tmpArr[k++] = array[s2++];}}while (s1 <= e1) {tmpArr[k++] = array[s1++];}while (s2 <= e2) {tmpArr[k++] = array[s2++];}//把排好序的数据 拷贝回原来的数组array当中for (int i = 0; i < tmpArr.length; i++) {array[i+left] = tmpArr[i];}}

归并排序总结

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

【 海量数据的排序问题】

外部排序:排序过程需要在磁盘等外部存储进行的排序

前提:内存只有 1G,需要排序的数据有 100G

因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序

  1. 先把文件切分成 200 份,每个 512 M
  2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
  3. 进行 2路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

3. 排序算法复杂度及稳定性分析

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/662229.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pinterest是什么软件?有什么功能?Pinterest怎么做营销?

如今&#xff0c;社媒营销已成为连接品牌与全球消费者的关键桥梁。随着像Instagram、Twitter等海外社交媒体平台的兴起&#xff0c;社媒营销人员和跨境电商面临着无限的机遇。而在这些平台中&#xff0c;有一个平台以其独特的视觉展示方式和高度专注的用户体验脱颖而出——那就…

力扣hot100 无重复字符的最长子串 双指针 滑动窗口 哈希

Problem: 3. 无重复字符的最长子串 文章目录 思路Code 思路 &#x1f468;‍&#x1f3eb; 参考 Code ⏰ 时间复杂度: O ( n ) O(n) O(n) &#x1f30e; 空间复杂度: O ( 1 ) O(1) O(1) class Solution {public int lengthOfLongestSubstring(String s){if (s null ||…

HTML+CSS+JS的3D进度条

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>HTMLCSSJS的3D进度条</title><style>…

Sqoop数据迁移工具

概述 Apache Sqoop&#xff08;SQL-to-Hadoop&#xff09;项目旨在协助RDBMS与Hadoop之间进行高效的大数据交流。用户可以在 Sqoop 的帮助下&#xff0c;轻松地把关系型数据库的数据导入到 Hadoop 与其相关的系统 (如HBase和Hive)中&#xff1b;同时也可以把数据从 Hadoop 系统…

Android应用程序上线到Google Play商店

将Android应用程序上线到Google Play商店涉及多个步骤。以下一般的上线流程&#xff0c;具体的步骤可能会根据开发者的需求和Google Play的更新而有所变化。确保遵循Google Play的规定和最佳实践&#xff0c;以确保应用能够成功上线并为用户提供良好的体验。北京木奇移动技术有…

78SXX系列­——用于各种电视机、收录机、电子仪器、设备的稳压电源电路,输出电流大,内设过热、短路保护电路,无需外接元件

78SXX系列是用于各种电视机、收录机、电子仪器、设备的稳压电源电路。包括78S05、78S06、 78S08、 78S09、 78S10、 78S12、 78S15. 主要特点&#xff1a; ● 极限输出电流:0.2A ● 固定输出电压: 5V、 6V、 8V、9V、10V、 12V、 15V ● 内置短路保护电路 ● 内置热保护电路 ●…

react 之 Class API

class API就是编写类组件&#xff0c;虽然react官方不在推荐使用&#xff0c;但是一般公司里维护的老项目里还是有的&#xff0c;可以简单了解下 1.类组件的基础结构 类组件就是通过js里的类来组织组件的代码的 1️⃣通过类属性state定义状态数据 2️⃣通过setState方法来修…

Docker Container(容器)

什么是容器 通俗地讲&#xff0c;容器是镜像的运行实体。镜像是静态的只读文件&#xff0c;而容器带有运行时需要的可写文件层&#xff0c;并且容器中的进程属于运行状态。即容器运行着真正的应用进程。容器有初建、运行、停止、暂停和删除五种状态。通俗地讲&#xff0c;容器…

使用Pycharm在本地调用chatgpt的接口

目录 1.安装环境 2.建立多轮对话的完整代码&#xff08;根据自己使用的不同代理需要修改端口&#xff08;port&#xff09;&#xff09; 3.修改代码在自己的Pycharm上访问chagpt的api并实现多轮对话&#xff0c;如果不修改是无法成功运行的。需要确定秘钥和端口以保证正常访…

注册虾皮买家号所需资料解析:一步步了解必备信息

为了在Shopee上获取更多的曝光和销售机会&#xff0c;许多卖家都在积极探索自动化注册的方法。使用Shopee买家通系统进行自动化注册&#xff0c;需要准备一些必要的资料&#xff0c;下面我们来详细了解一下&#xff1a; 手机号&#xff1a;在Shopee注册买家号时&#xff0c;手…

2024美赛C题保姆级分析完整思路代码数据教学

2024美国大学生数学建模竞赛C题保姆级分析完整思路代码数据教学 C题 Momentum in Tennis 网球中的动量 在2023年温布尔登男单决赛中&#xff0c;20岁的西班牙新星卡洛斯阿尔卡拉兹击败了36岁的诺瓦克德约科维奇。这是德约科维奇自2013年以来在温布尔登的首次失利&#xff0c;也…

linux+rv1126/imx6ull:opencv静态库交叉编译

目录 1.下载 2.准备工作 2.1安装依赖环境 2.2安装Cmake 2.3 解压opencv 3.Cmake设置 3.1文件夹选择 1&#xff09;进入源码根目录 2&#xff09;运行cmake 3&#xff09;选择目录 4&#xff09;进入配置界面 5&#xff09;查找编译器 6&#xff09;配置编译器 3.…

TCP 连接掉线自动重连

文章目录 TCP 连接掉线自动重连定义使用连接效果 TCP 接收数据时防止掉线。TCP 连接掉线自动重连。多线程环境下TCP掉线自动重连。 欢迎讨论更好的方法&#xff01; TCP 连接掉线自动重连 定义 定义一个类&#xff0c;以编写TCP连接函数Connect()&#xff0c;并且&#xff1a…

07.领域驱动设计:掌握整洁架构、六边形架构以及3种常见微服务架构模型的对比和分析

目录 1、概述 2、整洁架构 3、六边形架构 4、三种微服务架构模型的对比和分析 5、从三种架构模型看中台和微服务设计 5.1 中台建设要聚焦领域模型 5.2 微服务要有合理的架构分层 5.2.1 项目级微服务 5.2.2 企业级中台微服务 5.3 应用和资源的解耦与适配 6、总结 1、概…

Unity - 调节camera物理相机参数(HDRP)

在 “Hierarchy” 右键 -> Volume -> Global Volume new 一个 profile, 设置Mode为Pysical Camera 再点击camera组件&#xff0c;这时候设置 ISO、Shutter Speed、Aperture等参数值还会有效。

游戏APP开发:从创意到实现的全过程

随着智能手机的普及和移动互联网的发展&#xff0c;游戏APP市场日益繁荣。游戏APP开发已经成为一个热门行业&#xff0c;吸引了众多开发者和创业者的关注。本文将介绍游戏APP开发的全过程&#xff0c;包括创意、策划、设计、开发、测试和发布等环节。 一、创意 游戏APP开发的…

Hack The Box-Challenges-Misc-M0rsarchive

解压压缩包&#xff0c;里面是一张图片和一个新的zip文件 图片放大后的图案是----. 考虑到为莫斯密码&#xff0c;将其解密 密码为9&#xff0c;继续解压缩包 又是一张莫斯密码图加压缩包&#xff0c;写一段脚本去解密图片中的莫斯密码&#xff0c;并自动解压缩包 import re i…

【项目日记(七)】第三层: 页缓存的具体实现(上)

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:项目日记-高并发内存池⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你做项目   &#x1f51d;&#x1f51d; 开发环境: Visual Studio 2022 项目日…

XEX智能交易所USDT交易XEX是什么交易所

XEX交易所是数字货币交易平台&#xff0c;致力于为数字货币的爱好者提供一个安全、公平、开放、高效的区块链数字资产交易平台&#xff0c;数字货币指基于区块链技术和加密技术产生的&#xff0c;以去中心化形式发行、管理的&#xff0c;有一定价值的加密令牌、数字令牌或加密货…

CentOS 8最小安装和网络配置

文章目录 简介下载地址VMware 17创建虚拟机最小化安装拥有的外部命令yum源有问题网络配置开启SSH Server服务关闭防火墙设置host配置JDK环境完整参考 简介 CentOS 8的IOS如果下载DVD版本至少有10G 这里我们直接选择最小安装&#xff0c;因此选择最小系统boot版本 CentOS-8.5.21…