时间序列预测——GRU模型

时间序列预测——GRU模型

在深度学习领域,循环神经网络(RNN)是处理时间序列数据的一种常见选择。上期已介绍了LSTM的单步和多步预测。本文将深入介绍一种LSTM变体——门控循环单元(GRU)模型,包括其理论基础、公式、优缺点,并通过Python实现单步预测的示例。同时,将与长短时记忆网络(LSTM)进行比较,以更好地理解GRU的特性。

1. 引言

循环神经网络(RNN)是一类专门用于处理序列数据的神经网络。然而,传统的RNN存在梯度消失和梯度爆炸等问题,这导致了对长序列的有效建模变得困难。为了解决这些问题,门控循环单元(GRU)被提出。

2. GRU模型的理论

2.1 简介

GRU cell

门控循环单元(GRU)是由Cho等人于2014年提出的,旨在解决长短时记忆网络(LSTM)的一些问题。与LSTM相似,GRU也具有长期依赖性建模的能力,但其结构更加简单。GRU通过更新门和重置门来控制信息的流动,减少了参数数量,使得训练更加高效。

2.2 GRU的结构

GRU由两个门控制:更新门(Update Gate)和重置门(Reset Gate)。与LSTM不同,GRU没有细胞状态,而是直接使用隐藏状态。

GRU的隐藏状态更新公式为:

h t = ( 1 − z t ) ⊙ h t − 1 + z t ⊙ h ~ t \begin{equation} h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t \end{equation} ht=(1zt)ht1+zth~t

其中:

  • h t h_t ht是当前时间步的隐藏状态。
  • z t z_t zt 是更新门的输出。
  • ⊙ \odot 是逐元素相乘操作。
  • h ~ t \tilde{h}_t h~t 是当前时间步的候选隐藏状态。

2.3 更新门和重置门

更新门(Update Gate)和重置门(Reset Gate)的计算分别为:

z t = σ ( W z ⋅ [ h t − 1 , x t ] ) \begin{equation} z_t = \sigma(W_z \cdot [h_{t-1}, x_t]) \end{equation} zt=σ(Wz[ht1,xt])

r t = σ ( W r ⋅ [ h t − 1 , x t ] ) \begin{equation} r_t = \sigma(W_r \cdot [h_{t-1}, x_t]) \end{equation} rt=σ(Wr[ht1,xt])
其中:

  • W z W_z Wz W r W_r Wr 是权重矩阵。
  • σ \sigma σ 是sigmoid激活函数。
  • [ h t − 1 , x t ] [h_{t-1}, x_t] [ht1,xt] 是当前时间步的隐藏状态和输入拼接而成的向量。

2.4 候选隐藏状态

候选隐藏状态(Candidate Hidden State)的计算为:

h ~ t = tanh ⁡ ( W ⋅ [ r t ⊙ h t − 1 , x t ] ) \begin{equation} \tilde{h}_t = \tanh(W \cdot [r_t \odot h_{t-1}, x_t]) \end{equation} h~t=tanh(W[rtht1,xt])

其中:

  • W W W 是权重矩阵。

3. GRU模型与LSTM的区别

GRU与LSTM有相似之处,都采用了门控制机制,但它们在结构上存在一些区别。

  • 参数数量:GRU的参数数量相对较少,因为它没有细胞状态,直接使用隐藏状态。
  • 计算效率:由于参数较少,GRU在训练和预测时通常更加高效。
  • 表达能力:LSTM的细胞状态允许更好地保留和传递信息,适用于更复杂的序列建模任务。但在某些场景下,GRU由于其简单性能够表达一些简单序列的依赖关系。

4. Python实现GRU的单步预测

接下来,将使用Python和深度学习库Keras实现GRU的单步预测。将使用一个简单的时间序列数据集,以便清晰展示模型的训练和预测过程。

# 导入必要的库
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU, Dense# 创建示例时间序列数据
np.random.seed(42)
data = np.arange(0, 100, 0.1)
noise = np.random.normal(0, 1, len(data))
data += noise# 准备训练数据
seq_length = 10
x, y = [], []for i in range(len(data) - seq_length):x.append(data[i:i + seq_length])y.append(data[i + seq_length])x = np.array(x)
y = np.array(y)x = x.reshape((x.shape[0], x.shape[1], 1))# 构建GRU模型
model = Sequential()
model.add(GRU(50, activation='relu', input_shape=(seq_length, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')# 训练GRU模型
model.fit(x, y, epochs=50, verbose=0)# 使用训练好的模型进行单步预测
input_data = data[-seq_length:].reshape((1, seq_length, 1))
predicted_value = model.predict(input_data, verbose=0)# 可视化结果
plt.figure(figsize=(12, 6))
plt.plot(data, label='Original Data')
plt.scatter(len(data) - 1, predicted_value, color='red', marker='o', label='GRU Prediction (Single Step)')
plt.title('GRU Model - Single Step Prediction')
plt.legend()
plt.show()

多步预测其实就是修改输入输出的维度,这里不再赘述,可参考LSTM的单步和多步预测。

6. 总结

本文深入介绍了GRU模型的理论基础和相关公式,分析了其优缺点,并通过Python实现了单步预测的示例。GRU作为一种高效而强大的深度学习模型,在时间序列预测中展现了出色的性能。在实际应用中,可以根据具体任务的要求进行调整和优化,以达到更好的预测效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/660350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flutter canvas 画一条会动的波浪线 进度条

之前用 Flutter Canvas 画过一个三角三角形,html 的 Canvas 也画过一次类似的, 今天用 Flutter Canvas 试了下 感觉差不多: html 版本 大致效果如下: 思路和 html 实现的类似: 也就是找出点的位置,使用二阶…

DAY37:贪心算法738

今天写了一道题目,顺便看了一个很好的总结,这篇博客可以跳过。 Leetcode:738 单调递增的数字 因为最大的数字是9,当出现后面位数的数字比前面位数的数字小的时候,就把后面的数字都变成9,前面那个数字--。…

网安面试指南——(渗透,攻击,防御)

网安面试 目录 1.什么是 WebShell? 2.什么是网络钓鱼? 3.你获取网络安全知识途径有哪些? 4.什么是 CC 攻击? 5.Web 服务器被入侵后,怎样进行排查? 6.dll 文件是什么意思,有什么用?…

Cannot assign to read only property ‘exports‘ of object ‘#<Object>‘

看下多语言js文件中,是否同级出现相同名称。

3D 转换

1,3D的特点: 近小远大 物体后面遮挡不可见 2,3D移动 translate3d 3D移动在2D移动的基础上多加了一个可以移动的方向,就是z轴方向 transform:translateX(100px):仅仅是在x轴上移动…

mysql8.0主从搭建

一、架构说明 MySQL 主从架构是一种常见的数据库部署方案,用于实现数据的自动同步和冗余备份。在该架构中,主服务器负责处理事务的写入操作,从服务器则负责复制主服务器上的数据,并可以用于读取操作,以减轻主服务器的…

寒假刷题第19天

PTA甲级 1134 Vertex Cover #include<iostream> #include<vector> #include<set>using namespace std;typedef pair<int , int> PII; vector<PII>v; int n , m;bool check(set<int>&se) {for(auto i : v)if(!se.count(i.first) &…

【C/C++ 07】词频统计

一、题目 读入一篇英文短文&#xff0c;去除介词、连词、冠词、副词、代词等非关键性单词后&#xff0c;统计每个单词出现的次数&#xff0c;并将单词按出现次数的降序和单词字符的升序进行显示5个单词。 二、算法 1. 通过<fstream>库创建fstream流对象&#xff0c;并从…

uniapp【组件封装】时间戳格式化为星期

组件 components/dos-week.vue <template><text>{{week}}</text> </template> <script>export default {props: {time: String},mounted(e) {this.week this.getWeek(Number(this.time))},data() {return {week: }},methods: {// 通过时间戳计…

美区或其他外区Appstore账号AppleID注册教程,简单快速,苹果必备!

▍前言 现在越来越多的APP在国区APPstore下架&#xff0c;如果想有更好的使用体验&#xff0c;不得不去外区下载APP&#xff0c;那就需要一个外区的apple id&#xff0c;注册也很简单&#xff0c;今天大鹏通过电脑ipad给大家注册一个&#xff0c;建议大家直接使用iPhone或者iPa…

python魔法函数[全面]

1、init 用于初始化对象的属性和状态 当创建一个对象时&#xff0c;Python会自动调用该对象的__init__方法。 这个方法用于初始化对象的属性和状态&#xff0c;是对象创建过程中的一个重要环节 2、new # 通常我们不需要重写__new__方法&#xff0c;除非我们正在进行一些非常…

好书推荐丨保姆级Midjourney教程,这本写给大家看的设计书闭眼入!

文章目录 写在前面好书推荐Part.1Part.2Part.3 粉丝福利写在后面 写在前面 在AI绘画界&#xff0c;有每日经典一问&#xff1a;“你今天用Midjourney画了啥&#xff1f;”晒作品成为重头戏。 小红书上关于Midjourney出的图片点赞数惊人。 reddit上的恶搞幽默图片热度居高不下…

GSM-TRIAL-21.04.9-VMware-Workstation.OVA安装教程,GreenBone虚拟机安装教程

将GSM-TRIAL-21.04.9-VMware-Workstation.ova用VMware打开 先设置好网络和内存&#xff1a; 1、打开虚拟机&#xff0c;显示&#xff1a;你的GSM还不能完全正常工作。您想现在完成设置吗? 点击yes 2、创建用户&#xff0c;一会儿登录网页要用&#xff0c;点击yes 3、创建用户…

指向 Data Member 的指针

看一下很简单的一个例子&#xff1a; #include <stdlib.h> #include <stdio.h> #include <malloc.h>class origin { public:virtual ~origin(){} public:int x; };int main() {origin A;printf("&origin::x %p, &A.x %p\n", &origi…

OpenGL查询对象 Query Objects

查询对象和异步查询(Query Objects and Asynchronous Queries) Query Objects&#xff08;查询对象&#xff09;是OpenGL中的一种机制&#xff0c;用于获取有关一系列GL命令处理过程的信息。这些信息可以包括&#xff1a; 绘图命令处理的图元数量。写入变换反馈缓冲区的图元数…

小黄鸭聊电脑(4)硬盘分区

小黄鸭聊电脑(4)硬盘分区 夜深人静&#xff0c;万籁俱寂&#xff0c;老郭趴在电脑桌上打盹&#xff0c;桌子上的小黄鸭和桌子旁的冰箱又开始窃窃私语…… 小黄鸭&#xff1a;冰箱大哥&#xff0c;上次你说的那个“分区”和“格式化”是什么意思&#xff1f; 冰箱&#xff1a;…

洛夫克拉夫特与文学中的超自然恐怖:前哥特时代

洛夫克拉夫特与文学中的超自然恐怖&#xff1a;前哥特时代 ![ 洛夫克拉夫特是美国恐怖、科幻与奇幻小说作家&#xff0c;尤以其怪奇小说著称&#xff0c;他在自己的一系列小说中开发出了克苏鲁神话体系。他的创作对后世恐怖小说创造影响深远&#xff0c;我们可以在许多当代文…

[leetcode] 21. 合并两个有序链表

文章目录 题目描述解题方法双指针遍历java代码 题目描述 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4]示例 2&#xff…

自动驾驶:Apollo如何塑造人类的未来出行

前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;https://www.captainbed.cn/z ChatGPT体验地址 文章目录 前言1. 什么是自定义指令&#xff1f;2. Apollo中的自定义指令2.1 查询中的自定…

sqlalchemy——@listens_for

问&#xff1a;sqlalchemy如何实现&#xff1a;表中指定数据更新时&#xff0c;其time字段自动更新&#xff1f;答&#xff1a;使用listens_for 装饰器来注册事件监听器&#xff0c;确保在项目数据更新时触发相应的处理逻辑。 示例代码如下&#xff1a; # coding: utf-8 impo…