PyTorch深度学习实战(34)——Pix2Pix详解与实现

PyTorch深度学习实战(34)——Pix2Pix详解与实现

    • 0. 前言
    • 1. 模型与数据集
      • 1.1 Pix2Pix 基本原理
      • 1.2 数据集分析
      • 1.3 模型构建策略
    • 2. 实现 Pix2Pix 生成图像
    • 小结
    • 系列链接

0. 前言

Pix2Pix 是基于生成对抗网络 (Convolutional Generative Adversarial Networks, GAN) 的图像转换框架,能够将输入图像转换为与之对应的输出图像,能够广泛用于图像到图像转换的任务,如风格转换、图像修复、语义标签到图像的转换等。Pix2Pix 的核心思想是通过对抗训练将输入图像和目标输出图像进行配对,使生成网络可以学习到输入图像到输出图像的映射关系。在本节中,将学习使用 Pix2Pix 根据给定轮廓生成图像。

1. 模型与数据集

1.1 Pix2Pix 基本原理

Pix2Pix 是基于对抗生成网络 (Convolutional Generative Adversarial Networks, GAN) 的图像转换算法,可以将一种图像转换为与之对应的输出图像。例如,将黑白线稿转换为彩色图像或将低分辨率图像转换为高分辨率图像等。Pix2Pix 已经被广泛应用于计算机视觉领域,例如风格迁移、语义分割、图像去雾等任务。
假设,数据集中包含成对的相互关联图像,例如,线稿图像作为输入,实际图像作为输出。如果我们要在给定线稿输入图像的情况下生成图像,传统方法中,可以将其视为输入到输出的简单映射(即监督学习问题),但传统监督学习只能从历史数据中学习,无法为新线稿生成逼真图像。而 GAN 能够在确保生成的图像足够逼真的情况下,为新数据样本输出合理预测结果。

1.2 数据集分析

为了训练 Pix2Pix 模型,我们需要了解本节所用的数据集,数据集取自 berkeley Pix2Pix 数据集,可以自行构建数据集,也可以下载本文所用数据集,下载地址:https://pan.baidu.com/s/1a7VE-z1mGWhbIvvst9e8Ng,提取码:rkvd。数据集包含 4381 张不同样式和颜色的鞋子照片,图像尺寸为 256 x 256

1.3 模型构建策略

在本节中,我们将构建 PixPix 模型,根据鞋子的手绘轮廓生成鞋子图像,模型构建策略如下:

  • 获取实际图像并使用 cv2 边缘检测技术创建相应的物体轮廓
  • 从原始图像的区块中提取颜色样本,以便生成网络预测所需生成的颜色
  • 构建 UNet 架构作为生成网络,将带有样本区块颜色的轮廓作为输入并预测相应的图像
  • 构建判别网络架构,获取输入图像并预测它是真实图像还是生成图像
  • 训练生成网络和判别网络,直到生成网络可以生成欺骗判别网络的生成图像

2. 实现 Pix2Pix 生成图像

接下来,使用 PyTorch 实现 Pix2Pix 模型,根据给定鞋子轮廓生成图像。

(1) 导入数据集以及所需库:

import torch
from torch import nn
from torch import optim
from matplotlib import pyplot as plt
import numpy as np
from torchvision.utils import make_grid
from torch.utils.data import DataLoader, Dataset
import cv2
import random
from glob import glob
# from torch_snippets import *
device = "cuda" if torch.cuda.is_available() else "cpu"from torchvision import transforms

下载后的图像示例如下:

示例图像
在本节中,我们需要在给定轮廓(边缘)和鞋子的区块颜色的情况下绘制鞋子。接下来,获取给定鞋子图像的边缘,然后训练模型,根据给定鞋子的轮廓和区块颜色重建鞋子图像。

(2) 定义函数,用于从图像中获取边缘:

def detect_edges(img):img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)img_gray = cv2.bilateralFilter(img_gray, 5, 50, 50)img_gray_edges = cv2.Canny(img_gray, 45, 100)img_gray_edges = cv2.bitwise_not(img_gray_edges) # invert black/whiteimg_edges = cv2.cvtColor(img_gray_edges, cv2.COLOR_GRAY2RGB)return img_edges

在以上代码中,利用 OpenCV 中可用的方法获取图像中的边缘。

(3) 定义图像转换管道,用于预处理和归一化:

IMAGE_SIZE = 256preprocess = transforms.Compose([transforms.Lambda(lambda x: torch.Tensor(x.copy()).permute(2, 0, 1).to(device))
])normalize = lambda x: (x - 127.5)/127.5

(4) 定义数据集类 ShoesData,该数据集类返回原始图像和边缘图像。同时,我们将随机选择的区块中出现的颜色传递到网络中,通过这种方式,能够在图像的不同部分添加所需的颜色,并生成新图像,示例输入(第三张图像)和输出(第一张图像)如下图所示:

图像示例
输入图像是原始鞋子图像(第一张图像),使用原始图像可以提取鞋子的边缘(第二张图像),接下来,通过在边缘图像中添加颜色获取输入(第三张图像)-输出(第一张图像)组合。接下来,构建 ShoesData 类,接受输入轮廓图像,添加颜色,并返回带有色彩的轮廓图和原始鞋子图像。

定义 ShoesData 类、__init__ 方法和 __len__ 方法:

class ShoesData(Dataset):def __init__(self, items):self.items = itemsdef __len__(self):return len(self.items)

定义 __getitem__ 方法,处理输入图像以获取边缘图像,然后添加原始图像中存在的颜色。首先获取给定图像的边缘:

    def __getitem__(self, ix):f = self.items[ix]try: im = cv2.imread(f, 1)except:blank = preprocess(np.ones((IMAGE_SIZE, IMAGE_SIZE, 3), dtype="uint8"))return blank, blankedges = detect_edges(im)

调整图像大小并规范化图像:

        im, edges = cv2.resize(im, (IMAGE_SIZE,IMAGE_SIZE)), cv2.resize(edges, (IMAGE_SIZE,IMAGE_SIZE))im, edges = normalize(im), normalize(edges)

在边缘图像 edges 上添加颜色,并使用函数 preprocess 预处理原始图像和边缘图像:

        self._draw_color_circles_on_src_img(edges, im)im, edges = preprocess(im), preprocess(edges)return edges, im

定义添加颜色的函数:

    def _draw_color_circles_on_src_img(self, img_src, img_target):non_white_coords = self._get_non_white_coordinates(img_target)for center_y, center_x in non_white_coords:self._draw_color_circle_on_src_img(img_src, img_target, center_y, center_x)def _get_non_white_coordinates(self, img):non_white_mask = np.sum(img, axis=-1) < 2.75non_white_y, non_white_x = np.nonzero(non_white_mask)# randomly sample non-white coordinatesn_non_white = len(non_white_y)n_color_points = min(n_non_white, 300)idxs = np.random.choice(n_non_white, n_color_points, replace=False)non_white_coords = list(zip(non_white_y[idxs], non_white_x[idxs]))return non_white_coordsdef _draw_color_circle_on_src_img(self, img_src, img_target, center_y, center_x):assert img_src.shape == img_target.shape, "Image source and target must have same shape."y0, y1, x0, x1 = self._get_color_point_bbox_coords(center_y, center_x)color = np.mean(img_target[y0:y1, x0:x1], axis=(0, 1))img_src[y0:y1, x0:x1] = colordef _get_color_point_bbox_coords(self, center_y, center_x):radius = 2y0 = max(0, center_y-radius+1)y1 = min(IMAGE_SIZE, center_y+radius)x0 = max(0, center_x-radius+1)x1 = min(IMAGE_SIZE, center_x+radius)return y0, y1, x0, x1def choose(self):return self[random.randint(len(self))]

(5) 定义训练、验证数据对应的数据集和数据加载器:

from sklearn.model_selection import train_test_split
train_items, val_items = train_test_split(glob('ShoeV2_photo/*.png'), test_size=0.2, random_state=2)
trn_ds, val_ds = ShoesData(train_items), ShoesData(val_items)trn_dl = DataLoader(trn_ds, batch_size=16, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=16, shuffle=True)

(6) 定义生成网络和判别网络架构,利用权重初始化函数 (weights_init_normal),上采样模块 (UNetDown) 和下采样模块 (UNetUp) 定义 GeneratorUNetDiscriminator 体系结构。

初始化权重,使其服从正态分布:

def weights_init_normal(m):classname = m.__class__.__name__if classname.find("Conv") != -1:torch.nn.init.normal_(m.weight.data, 0.0, 0.02)elif classname.find("BatchNorm2d") != -1:torch.nn.init.normal_(m.weight.data, 1.0, 0.02)torch.nn.init.constant_(m.bias.data, 0.0)

定义 UNetwDownUNetUp 类:

class UNetDown(nn.Module):def __init__(self, in_size, out_size, normalize=True, dropout=0.0):super(UNetDown, self).__init__()layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)]if normalize:layers.append(nn.InstanceNorm2d(out_size))layers.append(nn.LeakyReLU(0.2))if dropout:layers.append(nn.Dropout(dropout))self.model = nn.Sequential(*layers)def forward(self, x):return self.model(x)class UNetUp(nn.Module):def __init__(self, in_size, out_size, dropout=0.0):super(UNetUp, self).__init__()layers = [nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False),nn.InstanceNorm2d(out_size),nn.ReLU(inplace=True),]if dropout:layers.append(nn.Dropout(dropout))self.model = nn.Sequential(*layers)def forward(self, x, skip_input):x = self.model(x)x = torch.cat((x, skip_input), 1)return x

定义 GeneratorUNet 类:

class GeneratorUNet(nn.Module):def __init__(self, in_channels=3, out_channels=3):super(GeneratorUNet, self).__init__()self.down1 = UNetDown(in_channels, 64, normalize=False)self.down2 = UNetDown(64, 128)self.down3 = UNetDown(128, 256)self.down4 = UNetDown(256, 512, dropout=0.5)self.down5 = UNetDown(512, 512, dropout=0.5)self.down6 = UNetDown(512, 512, dropout=0.5)self.down7 = UNetDown(512, 512, dropout=0.5)self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5)self.up1 = UNetUp(512, 512, dropout=0.5)self.up2 = UNetUp(1024, 512, dropout=0.5)self.up3 = UNetUp(1024, 512, dropout=0.5)self.up4 = UNetUp(1024, 512, dropout=0.5)self.up5 = UNetUp(1024, 256)self.up6 = UNetUp(512, 128)self.up7 = UNetUp(256, 64)self.final = nn.Sequential(nn.Upsample(scale_factor=2),nn.ZeroPad2d((1, 0, 1, 0)),nn.Conv2d(128, out_channels, 4, padding=1),nn.Tanh(),)def forward(self, x):d1 = self.down1(x)d2 = self.down2(d1)d3 = self.down3(d2)d4 = self.down4(d3)d5 = self.down5(d4)d6 = self.down6(d5)d7 = self.down7(d6)d8 = self.down8(d7)u1 = self.up1(d8, d7)u2 = self.up2(u1, d6)u3 = self.up3(u2, d5)u4 = self.up4(u3, d4)u5 = self.up5(u4, d3)u6 = self.up6(u5, d2)u7 = self.up7(u6, d1)return self.final(u7)

定义判别网络类 Discriminator

class Discriminator(nn.Module):def __init__(self, in_channels=3):super(Discriminator, self).__init__()def discriminator_block(in_filters, out_filters, normalization=True):"""Returns downsampling layers of each discriminator block"""layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)]if normalization:layers.append(nn.InstanceNorm2d(out_filters))layers.append(nn.LeakyReLU(0.2, inplace=True))return layersself.model = nn.Sequential(*discriminator_block(in_channels * 2, 64, normalization=False),*discriminator_block(64, 128),*discriminator_block(128, 256),*discriminator_block(256, 512),nn.ZeroPad2d((1, 0, 1, 0)),nn.Conv2d(512, 1, 4, padding=1, bias=False))def forward(self, img_A, img_B):img_input = torch.cat((img_A, img_B), 1)return self.model(img_input)

(7) 定义生成网络和判别网络模型对象:

from torchsummary import summary
generator = GeneratorUNet().to(device)
discriminator = Discriminator().to(device)

(8) 定义判别网络训练函数 discriminator_train_step

判别网络训练函数将源图像 (real_src)、真实图像目标输出 (real_trg)、生成图像目标输出 (fake_trg)、损失函数 (criterion_GAN) 和判别网络优化器 (d_optimizer) 作为输入:

def discriminator_train_step(real_src, real_trg, fake_trg, criterion_GAN, d_optimizer):#discriminator.train()d_optimizer.zero_grad()

通过比较真实图像的真实值 (real_trg) 和预测值 (real_src) 计算损失 (error_real),其期望判别网络将图像预测为真实图像(由 torch.ones 表示),然后执行反向传播:

    prediction_real = discriminator(real_trg, real_src)error_real = criterion_GAN(prediction_real, torch.ones(len(real_src), 1, 16, 16).cuda())error_real.backward()

计算与生成图像 (fake_trg) 对应的判别网络损失 (error_fake),其期望判别网络将生成图像目标分类为伪造图像(由 torch.zeros 表示),然后执行反向传播:

    prediction_fake = discriminator(fake_trg.detach(), real_src)error_fake = criterion_GAN(prediction_fake, torch.zeros(len(real_src), 1, 16, 16).cuda())error_fake.backward()

优化模型权重,并返回预测的真实图像和生成图像的总损失:

    d_optimizer.step()return error_real + error_fake

(9) 定义函数训练生成网络 (generator_train_step),其获取生成图像目标 (fake_trg) 并进行训练,使其在通过判别网络时被识别为生成图像的概率较低:

def generator_train_step(real_src, real_trg, fake_trg, criterion_GAN, criterion_pixelwise, lambda_pixel, g_optimizer):#discriminator.train()g_optimizer.zero_grad()prediction = discriminator(fake_trg, real_src)loss_GAN = criterion_GAN(prediction, torch.ones(len(real_src), 1, 16, 16).cuda())loss_pixel = criterion_pixelwise(fake_trg, real_trg)loss_G = loss_GAN + lambda_pixel * loss_pixelloss_G.backward()g_optimizer.step()return loss_G

在以上代码中,除了生成网络损失之外,我们还获取与给定轮廓的生成图像和真实图像之间的差异相对应的像素损失 (loss_pixel)。

(10) 定义函数获取预测样本:

denorm = transforms.Normalize((-1, -1, -1), (2, 2, 2))
def sample_prediction():"""Saves a generated sample from the validation set"""data = next(iter(val_dl))real_src, real_trg = datafake_trg = generator(real_src)img_sample = torch.cat([denorm(real_src[0]), denorm(fake_trg[0]), denorm(real_trg[0])], -1)img_sample = img_sample.detach().cpu().permute(1,2,0).numpy()plt.imshow(img_sample)plt.title('Source::Generated::GroundTruth')plt.show()

(11) 对生成网络和判别网络模型对象应用权重初始化函数 (weights_init_normal):

generator = GeneratorUNet().to(device)
discriminator = Discriminator().to(device)
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)

(12) 指定损失计算方法和优化器 (criteria_GAN 和 criteria_pixelwise):

criterion_GAN = torch.nn.MSELoss()
criterion_pixelwise = torch.nn.L1Loss()lambda_pixel = 100
g_optimizer = torch.optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))

(13) 训练模型:

val_dl = DataLoader(val_ds, batch_size=1, shuffle=True)epochs = 100
# log = Report(epochs)
d_loss_epoch = []
g_loss_epoch = []
for epoch in range(epochs):N = len(trn_dl)d_loss_items = []g_loss_items = []for bx, batch in enumerate(trn_dl):real_src, real_trg = batchfake_trg = generator(real_src)errD = discriminator_train_step(real_src, real_trg, fake_trg, criterion_GAN, d_optimizer)errG = generator_train_step(real_src, real_trg, fake_trg, criterion_GAN, criterion_pixelwise, lambda_pixel, g_optimizer)d_loss_items.append(errD.item())g_loss_items.append(errG.item())d_loss_epoch.append(np.average(d_loss_items))g_loss_epoch.append(np.average(g_loss_items))

(14) 在样本轮廓图像上生成图像:

[sample_prediction() for _ in range(2)]

生成图像
在上图中可以看出,模型能够生成与原始图像颜色相似的图像。

小结

Pix2Pix 是强大的图像转换框架,通过对抗训练和 U-Net 结构,使得生成网络能够将输入图像转换为与之对应的输出图像。同时在训练过程中,引入了像素级损失衡量生成图像与目标图像之间的像素级差异,促使生成网络生成更加细致和逼真的图像。本节中,介绍了 Pix2Pix 的模型训练流程,并使用 ShoeV2 数据集训练了一个 Pix2Pix 模型根据边缘图像生成鞋子图像。

系列链接

PyTorch深度学习实战(1)——神经网络与模型训练过程详解
PyTorch深度学习实战(2)——PyTorch基础
PyTorch深度学习实战(3)——使用PyTorch构建神经网络
PyTorch深度学习实战(4)——常用激活函数和损失函数详解
PyTorch深度学习实战(5)——计算机视觉基础
PyTorch深度学习实战(6)——神经网络性能优化技术
PyTorch深度学习实战(7)——批大小对神经网络训练的影响
PyTorch深度学习实战(8)——批归一化
PyTorch深度学习实战(9)——学习率优化
PyTorch深度学习实战(10)——过拟合及其解决方法
PyTorch深度学习实战(11)——卷积神经网络
PyTorch深度学习实战(12)——数据增强
PyTorch深度学习实战(13)——可视化神经网络中间层输出
PyTorch深度学习实战(14)——类激活图
PyTorch深度学习实战(15)——迁移学习
PyTorch深度学习实战(16)——面部关键点检测
PyTorch深度学习实战(17)——多任务学习
PyTorch深度学习实战(18)——目标检测基础
PyTorch深度学习实战(19)——从零开始实现R-CNN目标检测
PyTorch深度学习实战(20)——从零开始实现Fast R-CNN目标检测
PyTorch深度学习实战(21)——从零开始实现Faster R-CNN目标检测
PyTorch深度学习实战(22)——从零开始实现YOLO目标检测
PyTorch深度学习实战(23)——使用U-Net架构进行图像分割
PyTorch深度学习实战(24)——从零开始实现Mask R-CNN实例分割
PyTorch深度学习实战(25)——自编码器(Autoencoder)
PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder)
PyTorch深度学习实战(27)——变分自编码器(Variational Autoencoder, VAE)
PyTorch深度学习实战(28)——对抗攻击(Adversarial Attack)
PyTorch深度学习实战(29)——神经风格迁移
PyTorch深度学习实战(30)——Deepfakes
PyTorch深度学习实战(31)——生成对抗网络(Generative Adversarial Network, GAN)
PyTorch深度学习实战(32)——DCGAN详解与实现
PyTorch深度学习实战(33)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/658536.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pinctrl/gpio子系统(1)-pinctrl子系统介绍及驱动源码分析

1.简介 在如今的驱动开发工作中&#xff0c;实际上已经很少去对着寄存器手册进行驱动开发了&#xff0c;一般板子拿到手&#xff0c;已经有原厂的驱动开发工程师&#xff0c;在gpio子系统、pinctrl子系统中将自家芯片的引脚适配好了。 我们直接基于设备树已配置好的寄存器值&a…

计算机网络_1.4 计算机网络的定义和分类

1.4 计算机网络的定义和分类 一、计算机网络的定义&#xff08;无唯一定义&#xff09;二、计算机网络的分类&#xff08;从不同角度分类&#xff09;1、交换方式2、使用者3、传输介质4、覆盖范围5、拓扑结构 笔记来源&#xff1a; B站 《深入浅出计算机网络》课程 一、计算机…

【MySQL】学习并使用聚合函数和DQL进行分组查询

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-t8K8tl6eNwqdFmcD {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

飞桨大模型分布式训练技术

今天我为大家介绍飞桨大模型分布式训练技术&#xff0c;内容分为以下几个部分&#xff1a; 首先&#xff0c;我会介绍大模型训练面临的重点难题&#xff1b;然后&#xff0c;为大家介绍飞桨在大模型训练领域的特色分布式训练技术和优化方案&#xff1b;最后&#xff0c;伴随着…

ONLYOFFICE | 免费开源办公神器新选择

目录 前言&#xff1a; 1、什么是ONLYOFFICE&#xff1f; 2、ONLYOFFICE下载使用 3、ONLYOFFICE团队协作云办公功能 4、ONLYOFFICE 8.0新版本的亮点功能 4.1、显示协作者头像 4.2、插件 UI 界面更新 4.3、可填写的 PDF 表单 5、最后 前言&#xff1a; 一个好的开发工具…

blender关于几何接近(geometry proximity)节点的理解

如图&#xff0c;可以见到&#xff0c;我输入了一个立方体&#xff0c;一个圆锥体&#xff0c;为了便于区分 &#xff0c;将原生的立方体与圆锥转为了曲线&#xff0c;而进行了几何接近处理的网格不进行此转换。 几何接近的输入端&#xff0c;分为target&#xff08;目标&…

Adobe Photoshop 2024 v25.4.0 - 专业的图片设计软件

Adobe Photoshop 2024 v25.4.0更新了&#xff0c;从照片编辑和合成到数字绘画、动画和图形设计&#xff0c;任何您能想象到的内容都能通过PS2024轻松实现。 利用人工智能技术进行快速编辑。学习新技能并与社区分享您的工作。借助我们的最新版本&#xff0c;做令人惊叹的事情从未…

更改远程桌面网关端口和远程Web应用程序端口

很多玩Home-Lab的小伙伴会使用远程桌面网关&#xff08;Remote Desktop Gateway&#xff09;来安全远程家庭内网的计算机&#xff0c;但由于国内电信法律法规的原因&#xff0c;普通家庭宽带并不能使用默认的443端口&#xff08;TCP&#xff09;和3391端口&#xff08;UDP&…

qt-C++笔记之QStringList、QList<QString>、QString、QChar、QList<QChar>区别

qt-C笔记之QStringList、QList、QString、QChar、QList区别 —— 杭州 2024-01-30 凌晨0:27 参考博文&#xff1a;qt-C笔记之QStringList code review! 文章目录 qt-C笔记之QStringList、QList<QString>、QString、QChar、QList<QChar>区别1.Qt的字符容器类1.QSt…

postgresql 查询缓慢原因分析

pg_stat_activity 最近发现系统运行缓慢&#xff0c;查询数据老是超时&#xff0c;于是排查下pg_stat_activity 系统表&#xff0c;看看有没有耗时的查询sql SELECT pid, state, query, query_start, backend_type FROM pg_stat_activity WHERE state active AND query LIK…

Android 使用高德地图

一、获取高德平台key 【1】基于application包名&sha1值在高德控制台获取key值&#xff0c;详情参考&#xff1a; 获取Key-创建工程-开发指南-Android 地图SDK | 高德地图API 【2】在manifest中声明权限 【3】将拿到的key值在manifest中进行声明 <!--允许程序打开网络…

git clone常见问题一览及解决方法

在使用Ubuntu下&#xff0c;终端运行git clone命令时会遇见许多问题&#xff0c;本文主要针对一些常见的问题进行整理。关于换源问题&#xff0c;推荐使用小鱼的一键换源。 1.git clone 速度过慢 1.1 魔法 这个方法不做过多赘述&#xff0c;ubuntu下个人使用发现体验良好&am…

【Java】创建一个SpringBoot项目

软件版本&#xff1a;IDE专业版 一、创建 创建项目时&#xff0c;要注意的有下面几点 1、 为了使用JDK1.8&#xff0c;我们在创建时用阿里云国服&#xff0c;将Server URL &#xff1a; https://start.spring.io/ 或者http://start.springboot.io/更改为&#xff1a;https:/…

Roxlabs全球IP代理服务:解锁高效数据采集与网络应用新境界

引言 在这个数字化迅速发展的时代&#xff0c;数据采集和网络应用的重要性显得愈发突出。江苏阿克索网络科技有限公司旗下的Roxlabs&#xff0c;以其卓越的全球IP代理服务&#xff0c;正引领着这一领域的创新和发展。Roxlabs不仅提供遍及200多个国家和地区的高质量动态住宅IP资…

Java基础—面向对象—19static关键字详解、抽象类、接口、N种内部类

1、static关键字 匿名代码块、静态代码块、构造方法 静态代码块是在类加载的时候执行&#xff0c;仅执行一次 匿名代码块在调用构造函数之前 验证如下图&#xff1a; 2、静态导入包&#xff08;可能很多人听都没听过&#xff09; 3、Math是用final关键字的&#xff0c;fina…

日调用量超千万,超低查询延迟!跨越速运基于Flink + OceanBase的实时分析解决方案与实践

跨越速运成立于 2007 年&#xff0c;是一家在物流行业颇具影响力的大型综合速运企业。随着国内经济的持续增长&#xff0c;消费者的购物习惯也在不断变化&#xff0c;对物流行业的需求呈现爆发式增长。目前&#xff0c;跨越速运的服务已经覆盖全国 99% 的城市&#xff0c;年服务…

边缘计算第二版——第5章 边缘计算系统平台

5.3 面向智能家居的边缘计算系统 5.3.1 为什么要用EdgeOsH 智能家居的定义&#xff1a;一个自动化且智能的家居环境&#xff0c;使得居住者能够享受更健康、更舒适的生活。为了满足和改善居住者的生活方式&#xff0c;智能家居应该同时具备自我意识、自我管理、自我学习的能力…

【项目管理】整合管理

一、管理基础 1、项目整合管理由项目经理负责&#xff0c;项目经理负责整合所有其他知识领域的成果&#xff0c;并掌握项目总体情况。项目整合管理的责任不能被授权或转移&#xff0c;项目经理必须对整个项目承担最终责任。整合是项目经理的一项关键技能。执行项目整合时项目经…

java学习_数组

数组的储存原理 java内存分配数组名.length动态初始化数组的初始化 静态初始化 数组的长度eg. b.应用举例 c.在java中多个数组之间是可以相互赋值的。 eg. int []arr2 {1,2,3,4,5,6,7} int [] arr1arr2; 数组案例&#xff1a; 数组的初始化数组的访问数组的遍历 importjava.…