opencv学习 特征提取

内容来源于《opencv4应用开发入门、进阶与工程化实践》  

图像金字塔

拉普拉斯金字塔

对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。

详情可查看https://zhuanlan.zhihu.com/p/80362140

图像金字塔融合

 拉普拉斯金字塔通过源图像减去先缩小再放大的图像构成,保留的是残差,为图像还原做准备。

根据拉普拉斯金字塔的定义可以知道,拉普拉斯金字塔的每一层都是一个高斯差分图像。:

原图 = 拉普拉斯金字塔图L0层 + expand(高斯金字塔G1层),也就是说,可以基于低分辨率的图像与它的高斯差分图像,重建生成一个高分辨率的图像。

详情参考https://zhuanlan.zhihu.com/p/454085730的图像融合部分,讲的很好。

步骤:

  1. 生成苹果、橘子的高斯金字塔G_{L}G_{R}
  2.  求苹果、橘子的的拉普拉斯金字塔L_{apple}L_{orange}
  3. 求mask的高斯金字塔G_{mask}
  4. 在每个尺度(分辨率)下,用G_{mask}拼接L_{apple}L_{orange},最终得到拼接的拉普拉斯金字塔L_{fused}
  5. 生成最低分辨率的起始图(都选取最低分辨率下的G_{L}G_{R} 根据同分辨率下G_{mask} 进行拼接,得到最低分辨率下的拼接结果 O_{min}
  6. O_{min}开始,利用L_{fused}得到最高分辨率的拼接结果

示例代码:

int level = 3;
Mat smallestLevel;
Mat blend(Mat &a, Mat &b, Mat &m) {int width = a.cols;int height = a.rows;Mat dst = Mat::zeros(a.size(), a.type());Vec3b rgb1;Vec3b rgb2;int r1 = 0, g1 = 0, b1 = 0;int r2 = 0, g2 = 0, b2 = 0;int red = 0, green = 0, blue = 0;int w = 0;float w1 = 0, w2 = 0;for (int row = 0; row<height; row++) {for (int col = 0; col<width; col++) {rgb1 = a.at<Vec3b>(row, col);rgb2 = b.at<Vec3b>(row, col);w = m.at<uchar>(row, col);w2 = w / 255.0f;w1 = 1.0f - w2;b1 = rgb1[0] & 0xff;g1 = rgb1[1] & 0xff;r1 = rgb1[2] & 0xff;b2 = rgb2[0] & 0xff;g2 = rgb2[1] & 0xff;r2 = rgb2[2] & 0xff;red = (int)(r1*w1 + r2*w2);green = (int)(g1*w1 + g2*w2);blue = (int)(b1*w1 + b2*w2);// outputdst.at<Vec3b>(row, col)[0] = blue;dst.at<Vec3b>(row, col)[1] = green;dst.at<Vec3b>(row, col)[2] = red;}}return dst;
}vector<Mat> buildGaussianPyramid(Mat &image) {vector<Mat> pyramid;Mat copy = image.clone();pyramid.push_back(image.clone());Mat dst;for (int i = 0; i<level; i++) {pyrDown(copy, dst, Size(copy.cols / 2, copy.rows / 2));dst.copyTo(copy);pyramid.push_back(dst.clone());}smallestLevel = dst;return pyramid;
}vector<Mat> buildLapacianPyramid(Mat &image) {vector<Mat> lp;Mat temp;Mat copy = image.clone();Mat dst;for (int i = 0; i<level; i++) {pyrDown(copy, dst, Size(copy.cols / 2, copy.rows / 2));pyrUp(dst, temp, copy.size());Mat lapaian;subtract(copy, temp, lapaian);lp.push_back(lapaian);copy = dst.clone();}smallestLevel = dst;return lp;
}
void FeatureVectorOps::pyramid_blend_demo(Mat &apple, Mat &orange) {Mat mc = imread("D:/images/mask.png");if (apple.empty() || orange.empty()) {return;}imshow("苹果图像", apple);imshow("橘子图像", orange);vector<Mat> la = buildLapacianPyramid(apple);Mat leftsmallestLevel;smallestLevel.copyTo(leftsmallestLevel);vector<Mat> lb = buildLapacianPyramid(orange);Mat rightsmallestLevel;smallestLevel.copyTo(rightsmallestLevel);Mat mask;cvtColor(mc, mask, COLOR_BGR2GRAY);vector<Mat> maskPyramid = buildGaussianPyramid(mask);Mat samllmask;smallestLevel.copyTo(samllmask);Mat currentImage = blend(leftsmallestLevel, rightsmallestLevel, samllmask);imwrite("D:/samll.png", currentImage);// 重建拉普拉斯金字塔vector<Mat> ls;for (int i = 0; i<level; i++) {Mat a = la[i];Mat b = lb[i];Mat m = maskPyramid[i];ls.push_back(blend(a, b, m));}// 重建原图Mat temp;for (int i = level - 1; i >= 0; i--) {pyrUp(currentImage, temp, ls[i].size());add(temp, ls[i], currentImage);}imshow("高斯金子图像融合重建-图像", currentImage);
}

Harris角点检测

角点是图像中亮度变化最强的地方,反映了图像的本质特征。

图像的角点在各个方向上都有很强的梯度变化。

亚像素级别的角点检测

详细请参考https://www.cnblogs.com/qq21497936/p/13096048.html

大概理解是角点一般在边缘上,边缘的梯度与沿边缘方向的的向量正交,也就是内积为0,根据内积为零,角点周围能列出一个方程组,方程组的解就是角点坐标。

opencv亚像素级别定位函数API:

void cv::cornerSubPix(InputArray imageInputOutputArray corners //输入整数角点坐标,输出浮点数角点坐标Size winSize //搜索窗口Size zeroZone TermCriteria criteria //停止条件
)

 示例代码

void FeatureVectorOps::corners_sub_pixels_demo(Mat &image) {Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);int maxCorners = 400;double qualityLevel = 0.01;std::vector<Point2f> corners;goodFeaturesToTrack(gray, corners, maxCorners, qualityLevel, 5, Mat(), 3, false, 0.04);Size winSize = Size(5, 5);Size zeroZone = Size(-1, -1);//opencv迭代终止条件类TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.001);cornerSubPix(gray, corners, winSize, zeroZone, criteria);for (size_t t = 0; t < corners.size(); t++) {printf("refined Corner: %d, x:%.2f, y:%.2f\n", t, corners[t].x, corners[t].y);}
}

HOG特征描述子

详细请参考:https://baijiahao.baidu.com/s?id=1646997581304332534&wfr=spider&for=pc&searchword=HOG%E7%89%B9%E5%BE%81%E6%8F%8F%E8%BF%B0%E5%AD%90

讲的很好。

大概就是以一种特殊的直方图来表示图像特征,直方图存储的是梯度的方向和幅值(x轴是方向,y轴是幅值且加权)。

示例代码:

virtual void cv::HOGDescriptor::compute(InputArray imgstd::vector<float> & descriptorsSize winStride=Size()Size padding=Size()const std::vector<Point> &locations = std::vector<Point>()
)void FeatureVectorOps::hog_feature_demo(Mat &image) {Mat gray;cvtColor(image, gray, COLOR_BGR2GRAY);HOGDescriptor hogDetector;std::vector<float> hog_descriptors;hogDetector.compute(gray, hog_descriptors, Size(8, 8), Size(0, 0));std::cout << hog_descriptors.size() << std::endl;for (size_t t = 0; t < hog_descriptors.size(); t++) {std::cout << hog_descriptors[t] << std::endl;}
}

HOG特征行人检测

opencv基于HOG行人特征描述子的检测函数:

void HOGDescriptor::detectMultiScale(InputArray img,vector<Rect>& foundLocations, double hitThreshold=0, Size winStride=Size(), Size padding=Size(),double scale=1.05,double finalThreshold=2.0,bool useMeanshiftGrouping=false
)
//示例代码
void FeatureVectorOps::hog_detect_demo(Mat &image) {HOGDescriptor *hog = new HOGDescriptor();hog->setSVMDetector(hog->getDefaultPeopleDetector());vector<Rect> objects;hog->detectMultiScale(image, objects, 0.0, Size(4, 4), Size(8, 8), 1.25);for (int i = 0; i < objects.size(); i++) {rectangle(image, objects[i], Scalar(0, 0, 255), 2, 8, 0);}imshow("HOG行人检测", image);
}

ORB特征描述子

没看懂。

描述子匹配

暴力匹配:

再使用暴力匹配之前先创建暴力匹配器:

static Ptr<BFMatcher> cv::BFMatcher::create(int normType=NORM_L2 //计算描述子暴力匹配时采用的计算方法bool crossCheck=false //是否使用交叉验证
)

调用暴力匹配的匹配方法,有两种,最佳匹配和KNN匹配

void cv::DescriptorMatch::match(InputArray queryDescriptorsInputArray trainDescriptorsstd::vector<DMatch> & matchesInputArray mask=noArray
)void cv::DescriptorMatch::knnMatch(InputArray queryDescriptorsInputArray trainDescriptorsstd::vector<DMatch> & matchesint kInputArray mask=noArraybool compactResult =false
)
FLANN匹配:
cv::FlannBasedMatcher::FlannBasedMatcher(const Ptr<flann::IndexParams> & indexParams=makePtr<flann::KDTreeIndexParams>()const Ptr<flann::SearchParams> & searchParams=makePtr<flann::SearchParams>()
)

示例代码:

void FeatureVectorOps::orb_match_demo(Mat &box, Mat &box_in_scene) {// ORB特征提取auto orb_detector = ORB::create();std::vector<KeyPoint> box_kpts;std::vector<KeyPoint> scene_kpts;Mat box_descriptors, scene_descriptors;orb_detector->detectAndCompute(box, Mat(), box_kpts, box_descriptors);orb_detector->detectAndCompute(box_in_scene, Mat(), scene_kpts, scene_descriptors);// 暴力匹配auto bfMatcher = BFMatcher::create(NORM_HAMMING, false);std::vector<DMatch> matches;bfMatcher->match(box_descriptors, scene_descriptors, matches);Mat img_orb_matches;drawMatches(box, box_kpts, box_in_scene, scene_kpts, matches, img_orb_matches);imshow("ORB暴力匹配演示", img_orb_matches);// FLANN匹配auto flannMatcher = FlannBasedMatcher(new flann::LshIndexParams(6, 12, 2));flannMatcher.match(box_descriptors, scene_descriptors, matches);Mat img_flann_matches;drawMatches(box, box_kpts, box_in_scene, scene_kpts, matches, img_flann_matches);namedWindow("FLANN匹配演示", WINDOW_FREERATIO);cv::namedWindow("FLANN匹配演示", cv::WINDOW_NORMAL);imshow("FLANN匹配演示", img_flann_matches);
}

基于特征的对象检测

特征描述子匹配之后,可以根据返回的各个DMatch中的索引得到关键点对,然后拟合生成从对象到场景的变换矩阵H。根据矩阵H可以求得对象在场景中的位置,从而完成基于特征的对象检测。

opencv中求得单应性矩阵的API:

Mat cv::findHomograph(InputArray srcPointsOutputArray dstPointsint method=0double ransacReprojThreshold=3OutputArray mask=noArray()const int maxIters=2000;const double confidence=0.995
)

有了变换矩阵H ,可以运用透视变换函数求得场景中对象的四个点坐标并绘制出来。

透视变换函数:

void cv::perspectiveTransform(InputArray srcOutputArray dstInputArray m
)

示例代码:

void FeatureVectorOps::find_known_object(Mat &book, Mat &book_on_desk) {// ORB特征提取auto orb_detector = ORB::create();std::vector<KeyPoint> box_kpts;std::vector<KeyPoint> scene_kpts;Mat box_descriptors, scene_descriptors;orb_detector->detectAndCompute(book, Mat(), box_kpts, box_descriptors);orb_detector->detectAndCompute(book_on_desk, Mat(), scene_kpts, scene_descriptors);// 暴力匹配auto bfMatcher = BFMatcher::create(NORM_HAMMING, false);std::vector<DMatch> matches;bfMatcher->match(box_descriptors, scene_descriptors, matches);// 好的匹配std::sort(matches.begin(), matches.end());const int numGoodMatches = matches.size() * 0.15;matches.erase(matches.begin() + numGoodMatches, matches.end());Mat img_bf_matches;drawMatches(book, box_kpts, book_on_desk, scene_kpts, matches, img_bf_matches);imshow("ORB暴力匹配演示", img_bf_matches);// 单应性求Hstd::vector<Point2f> obj_pts;std::vector<Point2f> scene_pts;for (size_t i = 0; i < matches.size(); i++){//-- Get the keypoints from the good matchesobj_pts.push_back(box_kpts[matches[i].queryIdx].pt);scene_pts.push_back(scene_kpts[matches[i].trainIdx].pt);}Mat H = findHomography(obj_pts, scene_pts, RANSAC);std::cout << "RANSAC estimation parameters: \n" << H << std::endl;std::cout << std::endl;H = findHomography(obj_pts, scene_pts, RHO);std::cout << "RHO estimation parameters: \n" << H << std::endl;std::cout << std::endl;H = findHomography(obj_pts, scene_pts, LMEDS);std::cout << "LMEDS estimation parameters: \n" << H << std::endl;// 变换矩阵得到目标点std::vector<Point2f> obj_corners(4);obj_corners[0] = Point(0, 0); obj_corners[1] = Point(book.cols, 0);obj_corners[2] = Point(book.cols, book.rows); obj_corners[3] = Point(0, book.rows);std::vector<Point2f> scene_corners(4);perspectiveTransform(obj_corners, scene_corners, H);// 绘制结果Mat dst;line(img_bf_matches, scene_corners[0] + Point2f(book.cols, 0), scene_corners[1] + Point2f(book.cols, 0), Scalar(0, 255, 0), 4);line(img_bf_matches, scene_corners[1] + Point2f(book.cols, 0), scene_corners[2] + Point2f(book.cols, 0), Scalar(0, 255, 0), 4);line(img_bf_matches, scene_corners[2] + Point2f(book.cols, 0), scene_corners[3] + Point2f(book.cols, 0), Scalar(0, 255, 0), 4);line(img_bf_matches, scene_corners[3] + Point2f(book.cols, 0), scene_corners[0] + Point2f(book.cols, 0), Scalar(0, 255, 0), 4);//-- Show detected matchesnamedWindow("基于特征的对象检测", cv::WINDOW_NORMAL);imshow("基于特征的对象检测", img_bf_matches);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/657353.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【开源操作系统】上海道宁为您带来稳定、安全、开源和易用的操作系统——Ubuntu,为您的数字化生活保驾护航

Ubuntu是 源于非洲的一种传统价值观 意为“人性、关爱和共享” 这种价值观在 开源、稳定、安全、易用的 Ubuntu操作系统中 得到了完美的体现 除此之外&#xff0c;Ubuntu还具有 强大的安全性 它自带了诸多安全功能 如防火墙、加密文件系统等 可以有效地保护用户的隐私…

你ping一下,服务器累成狗--第二篇

你ping一下&#xff0c;服务器累成狗-目录篇文章浏览阅读1.7k次&#xff0c;点赞65次&#xff0c;收藏20次。我们的电脑怎么干活的https://blog.csdn.net/u010187815/article/details/135796967 你ping一下&#xff0c;服务器累成狗--第一篇文章浏览阅读62次&#xff0c;点赞6…

C#用正则表达式验证格式:电话号码、密码、邮编、手机号码、身份证、指定的小数点后位数、有效月

正则表达式在程序设计中有着重要的位置&#xff0c;经常被用于处理字符串信息。 用Regex类的IsMatch方法&#xff0c;使用正则表达式可以验证电话号码是否合法。 一、涉及到的知识点 Regex类的IsMatch方法用于指示正则表达式使用pattern参数中指定的正则表达式是否在输入字符串…

IntersectionObserver、MutationObserver应用,监听项目中指定属性数据,点击或模块显示时

当项目中&#xff0c;需要获取某个页面上、某个标签上、有指定自定义属性时&#xff0c;需要在点击该元素时进行公共逻辑处理&#xff0c;或该元素在显示的时候进行逻辑处理&#xff0c;这时可以定义一个公共的方法&#xff0c;在每个页面引用&#xff0c;并写入数据即可 &…

OSPF的优化

一&#xff1a;OSPF的优化&#xff1a;---lsa的优化 1、汇总 --- 减少骨干区域LSA更新量 2、特殊区域 --- 减少非骨干区域LSA更新量 二&#xff1a;汇总 1、区域汇总&#xff1a;OSPF的汇总被称为区域汇总 域间路由汇总---针对OSPF区域之间的路由进行汇总&#xff0c;针对…

【机器学习300问】21、什么是激活函数?常见激活函数都有哪些?

在我写的上一篇文章中介绍了感知机&#xff08;单个神经元&#xff09;的构成&#xff0c;其中就谈到了神经元会计算传送过来的信号的总和&#xff0c;只有当这个总和超过了某个界限值时&#xff0c;才会输出值。这也称为“神经元被激活”。如果想对神经网络是什么有更多了解的…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之DataPanel组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之DataPanel组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、DataPanel组件 数据面板组件&#xff0c;用于将多个数据占比情况使用占比图进…

集成学习之Boosting方法系列_XGboost

文章目录 【文章系列】【前言】【算法简介】【正文】&#xff08;一&#xff09;XGBoost前身&#xff1a;梯度提升树&#xff08;二&#xff09;XGBoost的特点&#xff08;三&#xff09;XGBoost实际操作1. 前期准备&#xff08;1&#xff09;数据格式&#xff08;2&#xff09…

小程序定制开发:解析定制化移动应用的未来

引言 在当今数字化时代&#xff0c;移动应用已经成为人们生活不可或缺的一部分。随着智能手机的普及&#xff0c;移动应用的需求呈现出爆发式增长&#xff0c;企业们也纷纷投身于这场数字化浪潮。然而&#xff0c;众多企业在竞争激烈的市场中&#xff0c;如何突显个性、提高用…

使用Eclipse搞Android项目报错

相信现在都没什么人还会用Eclipse来开发的了。 不过安装完后&#xff0c;打开Eclipse会提示我的Jdk版本不符合 --------------------------- Incompatible JVM --------------------------- Version 1.8.0_391 of the JVM is not suitable for this product. Version: 17 or g…

python之poetry模块,项目管理

一、简介 Poetry 是一个用于管理 Python 项目依赖关系和构建工具的工具。它提供了一个简单的命令行界面&#xff0c;可以帮助您创建、管理和发布 Python 项目&#xff0c;使用方法&#xff1a;command [options] [arguments] 官网&#xff1a;https://python-poetry.org/docs/…

详解SpringCloud微服务技术栈:深入ElasticSearch(1)——数据聚合

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;详解SpringCloud微服务技术栈&#xff1a;ElasticSearch实战&#xff08;旅游类项目&#xff09; &#x1f4da;订阅专栏&#x…

软件设计不是CRUD(11):低耦合模块设计理论——业务抽象:规划模块分层

上一篇文章《软件设计不是CRUD(10):低耦合模块设计理论——业务抽象:从需求中提取业务维度》本专题详细讲解了业务抽象的一个重要步骤:提取业务维度。本篇文章内容主要讲解在提取业务维度后,如何对应用程序中初步划分的各个功能模块进行分层规划。 1、为什么要进行模块分…

【lesson2】定长内存池的实现

文章目录 介绍定长内存池的设计定长内存池的实现需要成员变量需要的成员函数定长内存池结构定长内存池Delete&#xff08;释放空间&#xff09;的实现定长内存池New&#xff08;申请空间&#xff09;的实现 定长内存池的实现完整版 介绍 作为程序员(C/C)我们知道申请内存使用的…

Zookeeper实现分布式队列

目录 Zookeeper分布式队列 普通方式实现 设计思路 具体实现 使用Curator实现 具体实现 注意事项 Zookeeper分布式队列 常见的消息队列有:RabbitMQ&#xff0c;RocketMQ&#xff0c;Kafka等。Zookeeper作为一个分布式的小文件管理系统&#xff0c;同样能实现简单的队列功…

【python】图形化开发pyqt6基本写法模板与基础控件属性方法整理

pyqt6的简介 首先呢Python有许多可以编写图形化界面的库&#xff0c;我们通常跟着教程的话最初会接触的tkinter&#xff0c;但是学习中会发现编写的图形化跟我们平常接触的软件有很大区别&#xff08;简单来说就是丑&#xff09;。 pyqt则是第三方库&#xff0c;在Python中算…

ETL怎么实现文件处理

在现代企业及各类组织的日常运作中&#xff0c;数据作为一种关键的信息资源&#xff0c;其管理和分析能力直接影响到决策效率与准确性。文件作为数据的主要载体&#xff0c;承载着从运营报告、客户记录、交易明细等各种类型的数据信息。这些海量且多样的文件数据在未经处理的情…

flask_django基于python的城市轨道交通公交线路查询系统vue

同时&#xff0c;随着信息社会的快速发展&#xff0c;城市轨道交通线路查询系统面临着越来越多的信息&#xff0c;因此很难获得他们对高效信息的需求&#xff0c;如何使用方便快捷的方式使查询者在广阔的海洋信息中查询&#xff0c;存储&#xff0c;管理和共享信息方面有效&…

C语言菜鸟入门·运算符(算数运算符,关系运算符,逻辑运算符,位运算符,赋值运算符,三目运算符)详细介绍

目录 ​编辑 1. 算术运算符 2. 关系运算符 3. 逻辑运算符 4. 位运算符 5. 赋值运算符 6. 杂项运算符 ↦ sizeof & 三元 6.1 sizeof&#xff08;&#xff09; 6.2 &取地址运算符 6.3 * 6.4 三目运算符 7. 运算符优先级 运算符是一种告诉编译器执行…

ElementUI组件:Link 文字链接

Link 文字链接 点击下载learnelementuispringboot项目源码 效果图 el-link.vue页面效果图 项目里el-link.vue文件代码 <script> export default {name: el_link }</script> <!--https://element.eleme.cn/#/zh-CN/component/link --> <template>&l…