说明:本文提供基于C代码的 AES 加密、解密代码,并附带测试案例。
简介:AES加密是一种对称加密算法,全称为Advanced Encryption Standard,是美国联邦政府采用的一种区块加密标准。这种算法使用相同的秘钥进行加密和解密,加密和解密的速度非常快,适用于大量数据的加密。
AES加密使用128位、192位或256位密钥,对数据进行加密。这些密钥长度提供了不同的安全级别和性能特性。AES加密支持多种块大小,最常见的是128位块大小。
AES加密基于分组加密的工作原理,将明文分成固定大小的块,然后使用相同的密钥和算法对每个块进行加密。每个块独立进行加密,因此加密和解密操作可以并行进行,提高了加密和解密的速度。
AES加密的算法非常复杂,包括一系列的数学运算,如模加、字节替换、行移位、列混淆等。这些操作使用特定的参数和算法实现,保证了加密的安全性和强度。
总之,AES加密是一种高效、安全、可靠的对称加密算法,广泛应用于数据存储、传输和保护等领域。
#include <stdio.h>
#include <stdint.h>
#include <string.h>//----------------------------------------------------------------------------------------------------------------------------------------// "0123456789ABCDEF" /* 长度参考 */
#define TEST_TINY_AES_IV "0123456789ABCDEF" /* 初始向量IV,定长 */// "0123456789ABCDEF0123456789ABCDEF" /* 长度参考 */
#define TEST_TINY_AES_KEY "0123456789ABCDEF0123456789ABCDEF" /* AES key,定长 */#define AES_DATA_LEN (16) /* KEY 加密后的数据长度 */
#define AES_DEC_LEN (16) /* AES 数据解密后长度 */#define AES_ENCRYPT 1
#define AES_DECRYPT 0typedef struct
{int nr; /*!< number of rounds */uint32_t *rk; /*!< AES round keys */uint32_t buf[68]; /*!< unaligned data */
} tiny_aes_context;/* aes.h ---------------------------------------------------------------- */
void tiny_aes_setkey_enc(tiny_aes_context * ctx, uint8_t *key, int keysize);
void tiny_aes_setkey_dec(tiny_aes_context * ctx, uint8_t *key, int keysize);
void tiny_aes_crypt_ecb(tiny_aes_context * ctx,int mode,uint8_t input[16], uint8_t output[16]);
void tiny_aes_crypt_cbc(tiny_aes_context * ctx,int mode,int length,uint8_t iv[16],uint8_t *input, uint8_t *output);
void tiny_aes_crypt_cfb128(tiny_aes_context * ctx,int mode,int length,int *iv_off,uint8_t iv[16],uint8_t *input, uint8_t *output);/* aes.c ---------------------------------------------------------------- */
//#include <string.h>
#define TINY_CRYPT_AES#if 0
#define AES_ENCRYPT 1
#define AES_DECRYPT 0typedef struct {int nr; /*!< number of rounds */uint32_t *rk; /*!< AES round keys */uint32_t buf[68]; /*!< unaligned data */
} tiny_aes_context;
#endif#if defined(TINY_CRYPT_AES)/** 32-bit integer manipulation macros (little endian)*/
#ifndef GET_ULONG_LE
#define GET_ULONG_LE(n,b,i) \
{ \(n) = ( (uint32_t) (b)[(i) ] ) \| ( (uint32_t) (b)[(i) + 1] << 8 ) \| ( (uint32_t) (b)[(i) + 2] << 16 ) \| ( (uint32_t) (b)[(i) + 3] << 24 ); \
}
#endif#ifndef PUT_ULONG_LE
#define PUT_ULONG_LE(n,b,i) \
{ \(b)[(i) ] = (uint8_t) ( (n) ); \(b)[(i) + 1] = (uint8_t) ( (n) >> 8 ); \(b)[(i) + 2] = (uint8_t) ( (n) >> 16 ); \(b)[(i) + 3] = (uint8_t) ( (n) >> 24 ); \
}
#endif#if defined(TINY_CRYPT_AES_ROM_TABLES)#else/** Forward S-box & tables*/
static uint8_t FSb[256];
static uint32_t FT0[256];
static uint32_t FT1[256];
static uint32_t FT2[256];
static uint32_t FT3[256];/** Reverse S-box & tables*/
static uint8_t RSb[256];
static uint32_t RT0[256];
static uint32_t RT1[256];
static uint32_t RT2[256];
static uint32_t RT3[256];/** Round constants*/
static uint32_t RCON[10];/** Tables generation code*/
#define ROTL8(x) ( ( x << 8 ) & 0xFFFFFFFF ) | ( x >> 24 )
#define XTIME(x) ( ( x << 1 ) ^ ( ( x & 0x80 ) ? 0x1B : 0x00 ) )
#define MUL(x,y) ( ( x && y ) ? pow[(log[x]+log[y]) % 255] : 0 )static int aes_init_done = 0;static void aes_gen_tables(void)
{int i, x, y, z;int pow[256];int log[256];/** compute pow and log tables over GF(2^8)*/for (i = 0, x = 1; i < 256; i++) {pow[i] = x;log[x] = i;x = (x ^ XTIME(x)) & 0xFF;}/** calculate the round constants*/for (i = 0, x = 1; i < 10; i++) {RCON[i] = (uint32_t)x;x = XTIME(x) & 0xFF;}/** generate the forward and reverse S-boxes*/FSb[0x00] = 0x63;RSb[0x63] = 0x00;for (i = 1; i < 256; i++) {x = pow[255 - log[i]];y = x;y = ((y << 1) | (y >> 7)) & 0xFF;x ^= y;y = ((y << 1) | (y >> 7)) & 0xFF;x ^= y;y = ((y << 1) | (y >> 7)) & 0xFF;x ^= y;y = ((y << 1) | (y >> 7)) & 0xFF;x ^= y ^ 0x63;FSb[i] = (uint8_t)x;RSb[x] = (uint8_t)i;}/** generate the forward and reverse tables*/for (i = 0; i < 256; i++) {x = FSb[i];y = XTIME(x) & 0xFF;z = (y ^ x) & 0xFF;FT0[i] = ((uint32_t)y) ^((uint32_t)x << 8) ^((uint32_t)x << 16) ^ ((uint32_t)z << 24);FT1[i] = ROTL8(FT0[i]);FT2[i] = ROTL8(FT1[i]);FT3[i] = ROTL8(FT2[i]);x = RSb[i];RT0[i] = ((uint32_t)MUL(0x0E, x)) ^((uint32_t)MUL(0x09, x) << 8) ^((uint32_t)MUL(0x0D, x) << 16) ^((uint32_t)MUL(0x0B, x) << 24);RT1[i] = ROTL8(RT0[i]);RT2[i] = ROTL8(RT1[i]);RT3[i] = ROTL8(RT2[i]);}
}#endif/** AES key schedule (encryption)*/
void tiny_aes_setkey_enc(tiny_aes_context * ctx, uint8_t *key, int keysize)
{int i;uint32_t *RK;#if !defined(TINY_CRYPT_AES_ROM_TABLES)if (aes_init_done == 0) {aes_gen_tables();aes_init_done = 1;}
#endifswitch (keysize) {case 128:ctx->nr = 10;break;case 192:ctx->nr = 12;break;case 256:ctx->nr = 14;break;default:return;}ctx->rk = RK = ctx->buf;for (i = 0; i < (keysize >> 5); i++) {GET_ULONG_LE(RK[i], key, i << 2);}switch (ctx->nr) {case 10:for (i = 0; i < 10; i++, RK += 4) {RK[4] = RK[0] ^ RCON[i] ^((uint32_t)FSb[(RK[3] >> 8) & 0xFF]) ^((uint32_t)FSb[(RK[3] >> 16) & 0xFF] << 8) ^((uint32_t)FSb[(RK[3] >> 24) & 0xFF] << 16) ^((uint32_t)FSb[(RK[3]) & 0xFF] << 24);RK[5] = RK[1] ^ RK[4];RK[6] = RK[2] ^ RK[5];RK[7] = RK[3] ^ RK[6];}break;case 12:for (i = 0; i < 8; i++, RK += 6) {RK[6] = RK[0] ^ RCON[i] ^((uint32_t)FSb[(RK[5] >> 8) & 0xFF]) ^((uint32_t)FSb[(RK[5] >> 16) & 0xFF] << 8) ^((uint32_t)FSb[(RK[5] >> 24) & 0xFF] << 16) ^((uint32_t)FSb[(RK[5]) & 0xFF] << 24);RK[7] = RK[1] ^ RK[6];RK[8] = RK[2] ^ RK[7];RK[9] = RK[3] ^ RK[8];RK[10] = RK[4] ^ RK[9];RK[11] = RK[5] ^ RK[10];}break;case 14:for (i = 0; i < 7; i++, RK += 8) {RK[8] = RK[0] ^ RCON[i] ^((uint32_t)FSb[(RK[7] >> 8) & 0xFF]) ^((uint32_t)FSb[(RK[7] >> 16) & 0xFF] << 8) ^((uint32_t)FSb[(RK[7] >> 24) & 0xFF] << 16) ^((uint32_t)FSb[(RK[7]) & 0xFF] << 24);RK[9] = RK[1] ^ RK[8];RK[10] = RK[2] ^ RK[9];RK[11] = RK[3] ^ RK[10];RK[12] = RK[4] ^((uint32_t)FSb[(RK[11]) & 0xFF]) ^((uint32_t)FSb[(RK[11] >> 8) & 0xFF] << 8) ^((uint32_t)FSb[(RK[11] >> 16) & 0xFF] << 16) ^((uint32_t)FSb[(RK[11] >> 24) & 0xFF] << 24);RK[13] = RK[5] ^ RK[12];RK[14] = RK[6] ^ RK[13];RK[15] = RK[7] ^ RK[14];}break;default:break;}
}/** AES key schedule (decryption)*/
void tiny_aes_setkey_dec(tiny_aes_context * ctx, uint8_t *key, int keysize)
{int i, j;tiny_aes_context cty;uint32_t *RK;uint32_t *SK;switch (keysize) {case 128:ctx->nr = 10;break;case 192:ctx->nr = 12;break;case 256:ctx->nr = 14;break;default:return;}ctx->rk = RK = ctx->buf;tiny_aes_setkey_enc(&cty, key, keysize);SK = cty.rk + cty.nr * 4;*RK++ = *SK++;*RK++ = *SK++;*RK++ = *SK++;*RK++ = *SK++;for (i = ctx->nr - 1, SK -= 8; i > 0; i--, SK -= 8) {for (j = 0; j < 4; j++, SK++) {*RK++ = RT0[FSb[(*SK) & 0xFF]] ^RT1[FSb[(*SK >> 8) & 0xFF]] ^RT2[FSb[(*SK >> 16) & 0xFF]] ^RT3[FSb[(*SK >> 24) & 0xFF]];}}*RK++ = *SK++;*RK++ = *SK++;*RK++ = *SK++;*RK++ = *SK++;memset(&cty, 0, sizeof(tiny_aes_context));
}#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^ \FT1[ ( Y1 >> 8 ) & 0xFF ] ^ \FT2[ ( Y2 >> 16 ) & 0xFF ] ^ \FT3[ ( Y3 >> 24 ) & 0xFF ]; \\X1 = *RK++ ^ FT0[ ( Y1 ) & 0xFF ] ^ \FT1[ ( Y2 >> 8 ) & 0xFF ] ^ \FT2[ ( Y3 >> 16 ) & 0xFF ] ^ \FT3[ ( Y0 >> 24 ) & 0xFF ]; \\X2 = *RK++ ^ FT0[ ( Y2 ) & 0xFF ] ^ \FT1[ ( Y3 >> 8 ) & 0xFF ] ^ \FT2[ ( Y0 >> 16 ) & 0xFF ] ^ \FT3[ ( Y1 >> 24 ) & 0xFF ]; \\X3 = *RK++ ^ FT0[ ( Y3 ) & 0xFF ] ^ \FT1[ ( Y0 >> 8 ) & 0xFF ] ^ \FT2[ ( Y1 >> 16 ) & 0xFF ] ^ \FT3[ ( Y2 >> 24 ) & 0xFF ]; \
}#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \X0 = *RK++ ^ RT0[ ( Y0 ) & 0xFF ] ^ \RT1[ ( Y3 >> 8 ) & 0xFF ] ^ \RT2[ ( Y2 >> 16 ) & 0xFF ] ^ \RT3[ ( Y1 >> 24 ) & 0xFF ]; \\X1 = *RK++ ^ RT0[ ( Y1 ) & 0xFF ] ^ \RT1[ ( Y0 >> 8 ) & 0xFF ] ^ \RT2[ ( Y3 >> 16 ) & 0xFF ] ^ \RT3[ ( Y2 >> 24 ) & 0xFF ]; \\X2 = *RK++ ^ RT0[ ( Y2 ) & 0xFF ] ^ \RT1[ ( Y1 >> 8 ) & 0xFF ] ^ \RT2[ ( Y0 >> 16 ) & 0xFF ] ^ \RT3[ ( Y3 >> 24 ) & 0xFF ]; \\X3 = *RK++ ^ RT0[ ( Y3 ) & 0xFF ] ^ \RT1[ ( Y2 >> 8 ) & 0xFF ] ^ \RT2[ ( Y1 >> 16 ) & 0xFF ] ^ \RT3[ ( Y0 >> 24 ) & 0xFF ]; \
}/** AES-ECB block encryption/decryption*/
void tiny_aes_crypt_ecb(tiny_aes_context * ctx,int mode, uint8_t input[16], uint8_t output[16])
{int i;uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;RK = ctx->rk;GET_ULONG_LE(X0, input, 0);X0 ^= *RK++;GET_ULONG_LE(X1, input, 4);X1 ^= *RK++;GET_ULONG_LE(X2, input, 8);X2 ^= *RK++;GET_ULONG_LE(X3, input, 12);X3 ^= *RK++;if (mode == AES_DECRYPT) {for (i = (ctx->nr >> 1) - 1; i > 0; i--) {AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);}AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);X0 = *RK++ ^((uint32_t)RSb[(Y0) & 0xFF]) ^((uint32_t)RSb[(Y3 >> 8) & 0xFF] << 8) ^((uint32_t)RSb[(Y2 >> 16) & 0xFF] << 16) ^((uint32_t)RSb[(Y1 >> 24) & 0xFF] << 24);X1 = *RK++ ^((uint32_t)RSb[(Y1) & 0xFF]) ^((uint32_t)RSb[(Y0 >> 8) & 0xFF] << 8) ^((uint32_t)RSb[(Y3 >> 16) & 0xFF] << 16) ^((uint32_t)RSb[(Y2 >> 24) & 0xFF] << 24);X2 = *RK++ ^((uint32_t)RSb[(Y2) & 0xFF]) ^((uint32_t)RSb[(Y1 >> 8) & 0xFF] << 8) ^((uint32_t)RSb[(Y0 >> 16) & 0xFF] << 16) ^((uint32_t)RSb[(Y3 >> 24) & 0xFF] << 24);X3 = *RK++ ^((uint32_t)RSb[(Y3) & 0xFF]) ^((uint32_t)RSb[(Y2 >> 8) & 0xFF] << 8) ^((uint32_t)RSb[(Y1 >> 16) & 0xFF] << 16) ^((uint32_t)RSb[(Y0 >> 24) & 0xFF] << 24);} else { /* AES_ENCRYPT */for (i = (ctx->nr >> 1) - 1; i > 0; i--) {AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);}AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);X0 = *RK++ ^((uint32_t)FSb[(Y0) & 0xFF]) ^((uint32_t)FSb[(Y1 >> 8) & 0xFF] << 8) ^((uint32_t)FSb[(Y2 >> 16) & 0xFF] << 16) ^((uint32_t)FSb[(Y3 >> 24) & 0xFF] << 24);X1 = *RK++ ^((uint32_t)FSb[(Y1) & 0xFF]) ^((uint32_t)FSb[(Y2 >> 8) & 0xFF] << 8) ^((uint32_t)FSb[(Y3 >> 16) & 0xFF] << 16) ^((uint32_t)FSb[(Y0 >> 24) & 0xFF] << 24);X2 = *RK++ ^((uint32_t)FSb[(Y2) & 0xFF]) ^((uint32_t)FSb[(Y3 >> 8) & 0xFF] << 8) ^((uint32_t)FSb[(Y0 >> 16) & 0xFF] << 16) ^((uint32_t)FSb[(Y1 >> 24) & 0xFF] << 24);X3 = *RK++ ^((uint32_t)FSb[(Y3) & 0xFF]) ^((uint32_t)FSb[(Y0 >> 8) & 0xFF] << 8) ^((uint32_t)FSb[(Y1 >> 16) & 0xFF] << 16) ^((uint32_t)FSb[(Y2 >> 24) & 0xFF] << 24);}PUT_ULONG_LE(X0, output, 0);PUT_ULONG_LE(X1, output, 4);PUT_ULONG_LE(X2, output, 8);PUT_ULONG_LE(X3, output, 12);
}/** AES-CBC buffer encryption/decryption*/
void tiny_aes_crypt_cbc(tiny_aes_context * ctx,int mode,int length,uint8_t iv[16],uint8_t *input, uint8_t *output)
{int i;uint8_t temp[16];if (mode == AES_DECRYPT) {while (length > 0) {memcpy(temp, input, 16);tiny_aes_crypt_ecb(ctx, mode, input, output);for (i = 0; i < 16; i++)output[i] = (uint8_t)(output[i] ^ iv[i]);memcpy(iv, temp, 16);input += 16;output += 16;length -= 16;}} else {while (length > 0) {for (i = 0; i < 16; i++)output[i] = (uint8_t)(input[i] ^ iv[i]);tiny_aes_crypt_ecb(ctx, mode, output, output);memcpy(iv, output, 16);input += 16;output += 16;length -= 16;}}
}/** AES-CFB128 buffer encryption/decryption*/
void tiny_aes_crypt_cfb128(tiny_aes_context * ctx,int mode,int length,int *iv_off,uint8_t iv[16],uint8_t *input, uint8_t *output)
{int c, n = *iv_off;if (mode == AES_DECRYPT) {while (length--) {if (n == 0)tiny_aes_crypt_ecb(ctx, AES_ENCRYPT, iv, iv);c = *input++;*output++ = (uint8_t)(c ^ iv[n]);iv[n] = (uint8_t)c;n = (n + 1) & 0x0F;}} else {while (length--) {if (n == 0)tiny_aes_crypt_ecb(ctx, AES_ENCRYPT, iv, iv);iv[n] = *output++ = (uint8_t)(iv[n] ^ *input++);n = (n + 1) & 0x0F;}}*iv_off = n;
}#endif/* mode: 0 dec 解密, 1 enc 加密* k_check_t *cd :输入数据* uint8_t *enc_db :输出数据* */
uint8_t key_aes_enc_dec(uint8_t mode,uint8_t *cd,uint8_t *enc_db)
{tiny_aes_context ctx;uint8_t iv[16 + 1];uint8_t private_key[32 + 1];#if 1if ((mode == 1)&&(enc_db != NULL)){/* encrypt */memcpy(iv, TEST_TINY_AES_IV, strlen(TEST_TINY_AES_IV));iv[sizeof(iv) - 1] = '\0';memcpy(private_key, TEST_TINY_AES_KEY, strlen(TEST_TINY_AES_KEY));private_key[sizeof(private_key) - 1] = '\0';memset(enc_db, 0x0, sizeof(AES_DATA_LEN));tiny_aes_setkey_enc(&ctx, (uint8_t *) private_key, 256);tiny_aes_crypt_cbc(&ctx, AES_ENCRYPT, AES_DEC_LEN, iv, (uint8_t *)cd, enc_db);}
#endifif ((mode == 0)&&(enc_db != NULL)){/* decrypt */memcpy(iv, TEST_TINY_AES_IV, strlen(TEST_TINY_AES_IV));iv[sizeof(iv) - 1] = '\0';memcpy(private_key, TEST_TINY_AES_KEY, strlen(TEST_TINY_AES_KEY));private_key[sizeof(private_key) - 1] = '\0';tiny_aes_setkey_dec(&ctx, (uint8_t *) private_key, 256);tiny_aes_crypt_cbc(&ctx, AES_DECRYPT, AES_DEC_LEN, iv,(uint8_t *)cd ,(uint8_t *)enc_db);}return 1;
}//测试
int main()
{uint8_t data[] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F};uint8_t output_enc[16]; // 加密数据uint8_t output_dec[16]; // 解密数据key_aes_enc_dec(1,data,output_enc); //加密printf("enc:");for (uint8_t var = 0; var < 16; ++var){printf("%02X",output_enc[var]);}printf("\n");key_aes_enc_dec(0,output_enc,output_dec); //解密printf("dec:");for (uint8_t var = 0; var < 16; ++var){printf("%02X",output_dec[var]);}printf("\n");return 0;
}//计算结果
//enc:7A34715E1C18847155B58997C76E3ECC
//dec:000102030405060708090A0B0C0D0E0F