互联网加竞赛 基于深度学习的人脸表情识别

文章目录

  • 0 前言
  • 1 技术介绍
    • 1.1 技术概括
    • 1.2 目前表情识别实现技术
  • 2 实现效果
  • 3 深度学习表情识别实现过程
    • 3.1 网络架构
    • 3.2 数据
    • 3.3 实现流程
    • 3.4 部分实现代码
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸表情识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 技术介绍

1.1 技术概括

面部表情识别技术源于1971年心理学家Ekman和Friesen的一项研究,他们提出人类主要有六种基本情感,每种情感以唯一的表情来反映当时的心理活动,这六种情感分别是愤怒(anger)、高兴(happiness)、悲伤
(sadness)、惊讶(surprise)、厌恶(disgust)和恐惧(fear)。

尽管人类的情感维度和表情复杂度远不是数字6可以量化的,但总体而言,这6种也差不多够描述了。

在这里插入图片描述

1.2 目前表情识别实现技术

在这里插入图片描述
在这里插入图片描述

2 实现效果

废话不多说,先上实现效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3 深度学习表情识别实现过程

3.1 网络架构

在这里插入图片描述
面部表情识别CNN架构(改编自 埃因霍芬理工大学PARsE结构图)

其中,通过卷积操作来创建特征映射,将卷积核挨个与图像进行卷积,从而创建一组要素图,并在其后通过池化(pooling)操作来降维。

在这里插入图片描述

3.2 数据

主要来源于kaggle比赛,下载地址。
有七种表情类别: (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).
数据是48x48 灰度图,格式比较奇葩。
第一列是情绪分类,第二列是图像的numpy,第三列是train or test。

在这里插入图片描述

3.3 实现流程

在这里插入图片描述

3.4 部分实现代码

import cv2import sysimport jsonimport numpy as npfrom keras.models import model_from_jsonemotions = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']cascPath = sys.argv[1]faceCascade = cv2.CascadeClassifier(cascPath)noseCascade = cv2.CascadeClassifier(cascPath)# load json and create model archjson_file = open('model.json','r')loaded_model_json = json_file.read()json_file.close()model = model_from_json(loaded_model_json)# load weights into new modelmodel.load_weights('model.h5')# overlay meme facedef overlay_memeface(probs):if max(probs) > 0.8:emotion = emotions[np.argmax(probs)]return 'meme_faces/{}-{}.png'.format(emotion, emotion)else:index1, index2 = np.argsort(probs)[::-1][:2]emotion1 = emotions[index1]emotion2 = emotions[index2]return 'meme_faces/{}-{}.png'.format(emotion1, emotion2)def predict_emotion(face_image_gray): # a single cropped faceresized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)# cv2.imwrite(str(index)+'.png', resized_img)image = resized_img.reshape(1, 1, 48, 48)list_of_list = model.predict(image, batch_size=1, verbose=1)angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]return [angry, fear, happy, sad, surprise, neutral]video_capture = cv2.VideoCapture(0)while True:# Capture frame-by-frameret, frame = video_capture.read()img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY,1)faces = faceCascade.detectMultiScale(img_gray,scaleFactor=1.1,minNeighbors=5,minSize=(30, 30),flags=cv2.cv.CV_HAAR_SCALE_IMAGE)# Draw a rectangle around the facesfor (x, y, w, h) in faces:face_image_gray = img_gray[y:y+h, x:x+w]filename = overlay_memeface(predict_emotion(face_image_gray))print filenamememe = cv2.imread(filename,-1)# meme = (meme/256).astype('uint8')try:meme.shape[2]except:meme = meme.reshape(meme.shape[0], meme.shape[1], 1)# print meme.dtype# print meme.shapeorig_mask = meme[:,:,3]# print orig_mask.shape# memegray = cv2.cvtColor(orig_mask, cv2.COLOR_BGR2GRAY)ret1, orig_mask = cv2.threshold(orig_mask, 10, 255, cv2.THRESH_BINARY)orig_mask_inv = cv2.bitwise_not(orig_mask)meme = meme[:,:,0:3]origMustacheHeight, origMustacheWidth = meme.shape[:2]roi_gray = img_gray[y:y+h, x:x+w]roi_color = frame[y:y+h, x:x+w]# Detect a nose within the region bounded by each face (the ROI)nose = noseCascade.detectMultiScale(roi_gray)for (nx,ny,nw,nh) in nose:# Un-comment the next line for debug (draw box around the nose)#cv2.rectangle(roi_color,(nx,ny),(nx+nw,ny+nh),(255,0,0),2)# The mustache should be three times the width of the nosemustacheWidth =  20 * nwmustacheHeight = mustacheWidth * origMustacheHeight / origMustacheWidth# Center the mustache on the bottom of the nosex1 = nx - (mustacheWidth/4)x2 = nx + nw + (mustacheWidth/4)y1 = ny + nh - (mustacheHeight/2)y2 = ny + nh + (mustacheHeight/2)# Check for clippingif x1 < 0:x1 = 0if y1 < 0:y1 = 0if x2 > w:x2 = wif y2 > h:y2 = h# Re-calculate the width and height of the mustache imagemustacheWidth = (x2 - x1)mustacheHeight = (y2 - y1)# Re-size the original image and the masks to the mustache sizes# calcualted abovemustache = cv2.resize(meme, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask = cv2.resize(orig_mask, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)mask_inv = cv2.resize(orig_mask_inv, (mustacheWidth,mustacheHeight), interpolation = cv2.INTER_AREA)# take ROI for mustache from background equal to size of mustache imageroi = roi_color[y1:y2, x1:x2]# roi_bg contains the original image only where the mustache is not# in the region that is the size of the mustache.roi_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)# roi_fg contains the image of the mustache only where the mustache isroi_fg = cv2.bitwise_and(mustache,mustache,mask = mask)# join the roi_bg and roi_fgdst = cv2.add(roi_bg,roi_fg)# place the joined image, saved to dst back over the original imageroi_color[y1:y2, x1:x2] = dstbreak#     cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)#     angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)#     text1 = 'Angry: {}     Fear: {}   Happy: {}'.format(angry, fear, happy)#     text2 = '  Sad: {} Surprise: {} Neutral: {}'.format(sad, surprise, neutral)## cv2.putText(frame, text1, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# cv2.putText(frame, text2, (50, 150), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3)# Display the resulting framecv2.imshow('Video', frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# When everything is done, release the capturevideo_capture.release()cv2.destroyAllWindows()

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/655990.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HiveSQL题——排序函数(row_number/rank/dense_rank)

一、窗口函数的知识点 1.1 窗户函数的定义 窗口函数可以拆分为【窗口函数】。窗口函数官网指路&#xff1a; LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationhttps://cwiki.apache.org/confluence/display/Hive/LanguageManual%20Windowin…

【Algorithms 4】算法(第4版)学习笔记 01 - 1.5 案例研究:union-find算法

文章目录 前言参考目录学习笔记1&#xff1a;动态连通性2&#xff1a;UF 实现 1&#xff1a;快速查找 quick-find2.1&#xff1a;demo 演示 12.2&#xff1a;demo 演示 22.3&#xff1a;quick-find 代码实现3&#xff1a;UF 实现 2&#xff1a;快速合并 quick-union3.1&#xf…

【Java 数据结构】二叉树

二叉树 1. 树型结构&#xff08;了解&#xff09;1.1 概念1.2 概念&#xff08;重要&#xff09;1.3 树的表示形式&#xff08;了解&#xff09;1.4 树的应用 2. 二叉树&#xff08;重点&#xff09;2.1 概念2.2 两种特殊的二叉树2.3 二叉树的性质2.4 二叉树的存储2.5 二叉树的…

【人工智能课程】计算机科学博士作业二

使用TensorFlow1.x版本来实现手势识别任务中&#xff0c;并用图像增强的方式改进&#xff0c;基准训练准确率0.92&#xff0c;测试准确率0.77&#xff0c;改进后&#xff0c;训练准确率0.97&#xff0c;测试准确率0.88。 1 导入包 import math import warnings warnings.filt…

SpringBoot---创建项目

介绍 此项目SpringBoot使用的是2.6.1版本&#xff0c;由于这个项目使用的是maven聚合方式创建的&#xff0c;所以第二步是我在聚合方式下需要添加的依赖&#xff0c;完整的pom.xml内容放到了最下面。 第一步&#xff1a;创建Maven项目 这个里什么也不勾选&#xff0c;直接点…

JDK Locale的妙用:探索多语言和地区设置的强大功能

文章目录 前言应用场景国际化&#xff08;Internationalization&#xff09;格式化&#xff08;Formatting&#xff09;日期格式化数字格式化金额格式化百分比形式格式化 获取Locale信息 前言 JDK&#xff08;Java Development Kit&#xff09;的Locale类用于表示特定的地理、…

openGauss学习笔记-210 openGauss 数据库运维-常见故障定位案例-谓词下推引起的查询报错

文章目录 openGauss学习笔记-210 openGauss 数据库运维-常见故障定位案例-谓词下推引起的查询报错210.1 谓词下推引起的查询报错210.1.1 问题现象210.1.2 原因分析210.1.3 处理办法 openGauss学习笔记-210 openGauss 数据库运维-常见故障定位案例-谓词下推引起的查询报错 210.…

8-小程序数据promise化、共享、分包、自定义tabbar

小程序API Promise化 wx.requet 官网入口 默认情况下&#xff0c;小程序官方异步API都是基于回调函数实现的 wx.request({method: , url: , data: {},header: {content-type: application/json // 默认值},success (res) {console.log(res.data)},fail () {},complete () { }…

ANAPF有源电力滤波器选型计算——安科瑞赵嘉敏

配电系统中谐波电流的计算涉及很多因素。对于改造项目&#xff0c;可使用专业电能质量分析仪测得所需谐波数据&#xff1b;对于新建项目&#xff0c;设计人员并不能直接获得供电系统的的谐波数据&#xff0c;因此&#xff0c;我司研发人员通过众多不同行业、不同类型的项目&…

JSP仓储管理系统myeclipse定制开发SQLServer数据库网页模式java编程jdbc

一、源码特点 JSP仓储管理系统系统是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库 &#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为SQLServer2008&#x…

扩展学习|一文明晰推荐系统应用开发核心技术发展

文献来源&#xff1a;Lu J, Wu D, Mao M, et al. Recommender system application developments: a survey[J]. Decision support systems, 2015, 74: 12-32. 主题&#xff1a;关于推荐系统应用开发的调查研究 关键词:推荐系统、电子服务个性化、电子商务、电子学习、电子政务 …

除了Adobe之外,还有什么方法可以将Excel转为PDF?

前言 Java是一种广泛使用的编程语言&#xff0c;它在企业级应用开发中发挥着重要作用。而在实际的开发过程中&#xff0c;我们常常需要处理各种数据格式转换的需求。今天小编为大家介绍下如何使用葡萄城公司的的Java API 组件GrapeCity Documents for Excel&#xff08;以下简…

BL808学习日志-3-DPI-RGB屏幕使用-LVGL D0

一、DPI-RGB驱动 BL808的手册上显示是支持RGB565屏幕显示输出的&#xff0c;但是一直没找到网上的使用例程。且官方的SDK显示也是能够使用的&#xff0c;只是缺少了驱动。这一部分驱动在SIPEED的SDK中已经内置了&#xff0c;今天就是简单的点亮一个800*480 RGB565的屏幕。 二、…

Java基础数据结构之Lambda表达式

一.语法 基本语法&#xff1a;(parameters)->expression或者(parameters)->{statements;} parameters&#xff1a;类似方法中的形参列表&#xff0c;这里的参数是函数式接口里面的参数。这里的参数可以明确说明&#xff0c;也可以不声明而由JVM隐含的推断。当只有一个推…

C++实习报告(集合交,并,差运算的实现)

一、问题描述 1、问题描述 集合元素类型可以是整数、字符串和小数&#xff0c;实现集合的交、并、差运算。 2、功能要求 &#xff08;1&#xff09;用户能够输入两个集合元素&#xff1b; &#xff08;2&#xff09;能够完成集合的交、并、差运算&#xff1b; &#xff08;3&a…

07. STP的基本配置

文章目录 一. 初识STP1.1. STP概述1.2. STP的出现1.3. STP的作用1.4. STP的专业术语1.5. BPDU的报文格式1.6. STP的选择原则&#xff08;1&#xff09;选择根桥网桥原则&#xff08;2&#xff09;选择根端口原则 1.7. 端口状态1.8. STP报文类型1.9. STP的收敛时间 二. 实验专题…

【MySQL 流浪之旅】 第六讲 浅谈 MySQL 锁

系列文章目录 【MySQL 流浪之旅】 第一讲 MySQL 安装【MySQL 流浪之旅】 第二讲 MySQL 基础操作【MySQL 流浪之旅】 第三讲 MySQL 基本工具【MySQL 流浪之旅】 第四讲 MySQL 逻辑备份【MySQL 流浪之旅】 第五讲 数据库设计的三个范式 目录 系列文章目录 一、什么是锁&#x…

07-Nacos-接入Mysql实现持久化

1、默认内嵌的数据库 Derby 存于/data目录 2、扩展仅支持Mysql 5.6.5 执行Nacos中的SQL脚本&#xff0c;该脚本是Nacos-server文件夹中的nacos-mysql.sql 详见 01-Nacos源码打包、部署-CSDN博客 3、修改配置文件 Nacos-server中的conf目录下&#xff0c;application.proper…

5种ai智能自动写作,让你的写作效率秒拔高

写作是一项需要耗费大量时间和精力的任务&#xff0c;但现在有了AI智能自动写作软件&#xff0c;我们可以轻松提高写作效率。在国内市场上&#xff0c;有许多优秀的写作软件可供选择。本文将向您推荐5款国内的写作软件&#xff0c;并详细说明每款软件的功能特点。 爱制作AI 使…

小项目:使用MQTT上传温湿度到Onenet服务器

前言 我们之前分别编写了 DHT11、ESP8266 和 MQTT 的代码&#xff0c;现在我们将它们仨整合在一起&#xff0c;来做一个温湿度检测小项目。这个项目可以实时地将 DHT11 传感器获取到的温湿度数据上传到 OneNET 平台。通过登录 OneNET&#xff0c;我们随时随地可以查看温湿度数…