Unity中URP下额外灯角度衰减

文章目录

  • 前言
  • 一、额外灯中聚光灯的角度衰减
  • 二、AngleAttenuation函数的传入参数
    • 1、参数:spotDirection.xyz
    • 2、_AdditionalLightsSpotDir
    • 3、参数:lightDirection
    • 4、参数:distanceAndSpotAttenuation.zw
    • 5、_AdditionalLightsAttenuation
  • 三、AngleAttenuation函数的程序体
    • 1、我们先来看一下SdotL的结果
    • 2、cosOuterAngle:聚光灯外圈与聚光灯夹角的余弦值
    • 3、cosInnerAngle:聚光灯内圈与聚光灯夹角角的余弦值
    • 4、最后,就可以使用公式来计算了
    • 5、但是,我们在程序体中,看见的却是这样一句话
    • 6、最终、Unity还对其做了平方处理,目的是加强角度衰减效果


前言

在上一篇文章中,我们推导了URP下额外灯的距离衰减。

  • Unity中URP下额外灯的距离衰减

在这篇文章中,我们推导一下URP下额外灯的角度衰减。角度衰减只有在聚光灯中才有用。


一、额外灯中聚光灯的角度衰减

  • 衰减包括:距离衰减 和 角度衰减
  • 我们这篇文章主要分析 角度衰减,角度衰减是聚光灯独有的。

AngleAttenuation1(spotDirection.xyz, lightDirection, distanceAndSpotAttenuation.zw);

在这里插入图片描述


二、AngleAttenuation函数的传入参数

  • 调用

AngleAttenuation1(spotDirection.xyz, lightDirection, distanceAndSpotAttenuation.zw);

1、参数:spotDirection.xyz

  • 该参数是通过内置变量获取的
    在这里插入图片描述

  • 该内置变量是C#提前计算好的
    在这里插入图片描述

2、_AdditionalLightsSpotDir

  • 我们来看一下C#中怎么计算得出该参数
    在这里插入图片描述
    在这里插入图片描述
  • 一开始会赋值一个聚光灯方向默认值
    在这里插入图片描述
  • k_DefaultLightSpotDirection,默认值为(0,0,1,0)
    在这里插入图片描述
  • 非平行灯下,在对距离衰减修改后,还会判断是否是聚光灯
  • 是聚光灯,则会修改聚光灯方向的默认值
    在这里插入图片描述
  • 修改时,会获取聚光灯方向,并对其取反
    在这里插入图片描述

3、参数:lightDirection

  • 之前计算出的,额外光方向的单位向量
    在这里插入图片描述

4、参数:distanceAndSpotAttenuation.zw

  • 该参数是读取的内置参数
    在这里插入图片描述
  • 该内置变量是C#提前计算好的
    在这里插入图片描述

5、_AdditionalLightsAttenuation

  • 我们来看一下C#中,怎么计算该参数
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

三、AngleAttenuation函数的程序体

在这里插入图片描述

  • 角度衰减公式: a n g l e A t t e n u a t i o n = S d o t L − c o s O u t e r A n g l e c o s I n n e r A n g l e − c o s O u t e r A n g l e angleAttenuation=\frac{SdotL - cosOuterAngle} {cosInnerAngle - cosOuterAngle} angleAttenuation=cosInnerAnglecosOuterAngleSdotLcosOuterAngle

  • 我们先看一下这些参数分别代表什么

  • SdotL:S(聚光灯方向的相反方向)点积 L(指向聚光灯方向单位向量)

  • cosOuterAngle:聚光灯外圈与聚光灯夹角的余弦值

  • cosInnerAngle :聚光灯内圈与聚光灯夹角角的余弦值

1、我们先来看一下SdotL的结果

  • 我们可以看出目标点越靠近聚光灯中心,我们的结果越趋向 1,则越亮
    请添加图片描述

2、cosOuterAngle:聚光灯外圈与聚光灯夹角的余弦值

  • C#中提前把角度取Unity传入的一半,然后转弧度,再计算余弦值
  • 取一半的原因是,我们传入的值是需要的角的两倍
    在这里插入图片描述

在这里插入图片描述

请添加图片描述

3、cosInnerAngle:聚光灯内圈与聚光灯夹角角的余弦值

  • C#中提前把角度取Unity传入的一半,然后转弧度,再计算余弦值
  • 取一半的原因是,我们传入的值是需要的角的两倍
    在这里插入图片描述
  • 我们主要看非特效情况下
    在这里插入图片描述
    请添加图片描述

4、最后,就可以使用公式来计算了

  • 角度衰减公式: a n g l e A t t e n u a t i o n = S d o t L − c o s O u t e r A n g l e c o s I n n e r A n g l e − c o s O u t e r A n g l e angleAttenuation=\frac{SdotL - cosOuterAngle} {cosInnerAngle - cosOuterAngle} angleAttenuation=cosInnerAnglecosOuterAngleSdotLcosOuterAngle

  • 该公式其实只是起到了 平滑曲线过渡的作用
    在这里插入图片描述

  • 该公式的作用:限制最后余弦值的结果,还达到了平滑过渡的效果

  • 当 targetPos 夹角大于 outerDir 的夹角时,余弦值反而小了,则取outerDir夹角余弦值来替代
    在这里插入图片描述

  • 当 targetPos 夹角小于 innerDir 的夹角时,余弦值反而大了,则取innerDir夹角余弦值来替代

在这里插入图片描述

5、但是,我们在程序体中,看见的却是这样一句话

在这里插入图片描述

  • 原因在于,这是Unity为了节省性能,对该公式进行了化简

a n g l e A t t e n u a t i o n = S d o t L − c o s O u t e r A n g l e c o s I n n e r A n g l e − c o s O u t e r A n g l e angleAttenuation=\frac{SdotL - cosOuterAngle} {cosInnerAngle - cosOuterAngle} angleAttenuation=cosInnerAnglecosOuterAngleSdotLcosOuterAngle

= S d o t L c o s I n n e r A n g l e − c o s O u t e r A n g l e − c o s O u t e r A n g l e c o s I n n e r A n g l e − c o s O u t e r A n g l e =\frac{SdotL } {cosInnerAngle - cosOuterAngle}-\frac{cosOuterAngle} {cosInnerAngle - cosOuterAngle} =cosInnerAnglecosOuterAngleSdotLcosInnerAnglecosOuterAnglecosOuterAngle

= S d o t L ∗ 1 c o s I n n e r A n g l e − c o s O u t e r A n g l e + − c o s O u t e r A n g l e c o s I n n e r A n g l e − c o s O u t e r A n g l e =SdotL*\frac{1} {cosInnerAngle - cosOuterAngle}+\frac{-cosOuterAngle} {cosInnerAngle - cosOuterAngle} =SdotLcosInnerAnglecosOuterAngle1+cosInnerAnglecosOuterAnglecosOuterAngle

  • Unity在C#中,对其提前进行了计算
  • 使 d i s t a n c e A n d S p o t A t t e n u a t i o n . z = 1 c o s I n n e r A n g l e − c o s O u t e r A n g l e distanceAndSpotAttenuation.z=\frac{1} {cosInnerAngle - cosOuterAngle} distanceAndSpotAttenuation.z=cosInnerAnglecosOuterAngle1
  • 使 d i s t a n c e A n d S p o t A t t e n u a t i o n . w = − c o s O u t e r A n g l e c o s I n n e r A n g l e − c o s O u t e r A n g l e distanceAndSpotAttenuation.w =\frac{-cosOuterAngle} {cosInnerAngle - cosOuterAngle} distanceAndSpotAttenuation.w=cosInnerAnglecosOuterAnglecosOuterAngle
    在这里插入图片描述
    在这里插入图片描述

6、最终、Unity还对其做了平方处理,目的是加强角度衰减效果

return atten * atten;

  • 平方前
    请添加图片描述

  • 平方后
    请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/654553.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Security关键之5张数据表与7张表 !!!

一、什么是认证和授权: 认证:系统提供的用于识别用户身份的功能,通常提供用户名和密码进行登录其实就是在进行认证,认证的目的是让系统知道你是谁。授权:用户认证成功后,需要为用户授权,其实就…

全连MGRE(OSPF)综合实验

一.要求 二.底层--所有节点拥有合法ip地址 r1: r2(isp): r3: r4: r5: r6: 三.全网可达 r1: r3: r4: r5: r6: 四.构建全连的MGRE环境 R1-R3-R4 R1: r3: r4: R1-R5-R6 r1: r5: r6: 五.ospf配置 R1: r3: r4: r5: r6:…

Qt应用软件【串口篇】串口通信

文章目录 1.串口概述2.串口传输数据的基本原理电信号的传输过程 3.串口的几个概念数据位(Data Bits)奇偶校验位(Parity Bit)停止位(Stop Bits)流控制(Flow Control)波特率&#xff0…

142. 环形链表 II(力扣LeetCode)

文章目录 142. 环形链表 II题目描述解题思路判断链表是否有环如果有环,如何找到这个环的入口 c代码 142. 环形链表 II 题目描述 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个…

7.【SpringBoot3】项目部署、属性配置、多环境开发

文章目录 1. SpringBoot 项目部署2. 属性配置方式2.1 通过 cmd 命令行配置2.2 通过环境变量配置2.3 通过外部配置文件来配置 3. 多环境开发 Profiles3.1 多环境开发的单文件配置3.2 多环境开发的多文件配置3.3 多环境开发-分组 1. SpringBoot 项目部署 项目完成后,…

LLM大模型x知识图谱2024最新SOTA方案【附开源代码】

大模型LLM与知识图谱KG的结合可以充分发挥两者的优势,例如LLMs的通用知识和语言处理能力,以及KGs的结构化和准确性。这种结合不仅能够提升模型的知识处理能力,还能够在多个层面上优化模型的性能,更好地解决各种现实世界的问题&…

新火种AI|Taylor Swift不雅照被疯传!AI背后的隐患和危机引人深思...

作者:小岩 编辑:彩云 如今本就是一个信息爆炸的年代,再伴随2023年AI技术的井喷式发展,AI正在以迅雷不及掩耳之势渗透到我们生活的方方面面。不过,AI技术是一把双刃剑,我们在享受AI技术带来的便捷和实用的…

代码随想录刷题笔记 DAY17 | 平衡二叉树 No.110 | 二叉树的所有路径 No.257 | 左叶子之和 No.404

Day 17 01. 平衡二叉树(No. 110) 题目链接 代码随想录题解 1.1 题目 给定一个二叉树,判断它是否是高度平衡的二叉树。 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点 的左右两个子树的高度差的绝对值不超…

LabVIEW直流电机转速检测与控制

研究了使用LabVIEW软件和ELVIS实验平台来检测和控制直流电机的转速。通过集成光电传感器和霍尔传感器,实现了对电机转速的精确测量和调节。 系统组成:系统由NI ELVIS实验平台、光电传感器、霍尔传感器和直流电机组成。通过这些硬件元件,系统…

架构篇19:单服务器高性能模式-Reactor与Proactor

文章目录 ReactorProactor小结上篇介绍了单服务器高性能的 PPC 和 TPC 模式,它们的优点是实现简单,缺点是都无法支撑高并发的场景,尤其是互联网发展到现在,各种海量用户业务的出现,PPC 和 TPC 完全无能为力。今天我将介绍可以应对高并发场景的单服务器高性能架构模式:Rea…

如何本地搭建Tale博客网站并发布到公网分享好友远程访问——“cpolar内网穿透”

文章目录 前言1. Tale网站搭建1.1 检查本地环境1.2 部署Tale个人博客系统1.3 启动Tale服务1.4 访问博客地址 2. Linux安装Cpolar内网穿透3. 创建Tale博客公网地址4. 使用公网地址访问Tale 前言 今天给大家带来一款基于 Java 语言的轻量级博客开源项目——Tale,Tale…

C/C++编码问题研究

文章目录 一、Unicode字符集与U8/U16/U32编码二、编码1. 占字节数2. ASCII、GB2312、GBK、GB18030 以及 UTF8 的关系3. BOM4. UTF-8的存储实现 三、编译器字符集设置1. GCC语法Example 2. MSVC语法Example 三、wchar_t五、编码转换函数六、代码 & 实践1. UTF8与UTF16、UTF3…

机器学习系列 16:使用 scikit-learn 的 Pipeline

在机器学习项目中,我们经常需要进行大量的数据预处理步骤,最后用处理干净的数据集来拟合机器学习算法得到一个合适的机器学习模型。 scikit-learn 提供了一个强大的 Pipeline 类来帮助我们将所有的数据预处理步骤和训练模型的步骤串起来。就像流水线一样…

数据目录驱动测试——深入探讨Pytest插件 pytest-datadir

在软件测试中,有效管理测试数据对于编写全面的测试用例至关重要。Pytest插件 pytest-datadir 提供了一种优雅的解决方案,使得数据目录驱动测试变得更加简单而灵活。本文将深入介绍 pytest-datadir 插件的基本用法和实际案例,助你更好地组织和利用测试数据。 什么是pytest-da…

重写Sylar基于协程的服务器(0、搭建开发环境以及项目框架 || 下载编译简化版Sylar)

重写Sylar基于协程的服务器(0、搭建开发环境以及项目框架 || 下载编译简化版Sylar) 重写Sylar基于协程的服务器系列: 重写Sylar基于协程的服务器(0、搭建开发环境以及项目框架 || 下载编译简化版Sylar) 前言 sylar是…

搜索<2>——记忆化搜索与剪枝

Part 1:记忆化搜索 记忆化搜索其实就是拿个数组记录下已经得到的值,这样再遇到的时候直接调用即可。 P1464: 虽然此题好像不用记忆化也行,但我们还是老老实实写个记忆化吧。没什么困难的地方,就是它叫你怎么干你就怎么干,记得开…

PDA移动终端怎样解决货物管理混乱问题

在现代物流仓储行业中,货物管理混乱、信息不准确是一个普遍存在的问题。为了解决这一难题,PDA移动终端应运而生,通过其强大的数据采集功能、丰富传输功能、丰富联网方式和高防护性能等,为物流仓储企业提供了一种全新的解决方案。 …

jenkins pipeline配置maven可选参数

1、在Manage Jenkins下的Global Tool Configuration下对应的maven项添加我们要用得到的不同版本的maven安装项 2、pipeline文件内容具体如下 我们maven是单一的,所以我们都是配置单选参数 pipeline {agent anyparameters {gitParameter(name: BRANCH_TAG, type: …

【笔试常见编程题03】统计回文、连续最大和、不要二、把字符串转换成整数

1. 统计回文 “回文串”是一个正读和反读都一样的字符串,比如“level”或者“noon”等等就是回文串。花花非常喜欢这种拥有对称美的回文串,生日的时候她得到两个礼物分别是字符串A和字符串B。现在她非常好奇有没有办法将字符串B插入字符串A使产生的字符串…

Mysql运维篇(三) MySQL备份与恢复

一路走来,所有遇到的人,帮助过我的、伤害过我的都是朋友,没有一个是敌人。如有侵权,请留言,我及时删除! 一、物理备份与逻辑备份 1、物理备份:备份数据文件,转储数据库物理文件到某…