【动态规划】【字符串】【行程码】1531. 压缩字符串

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

LeetCode 1531. 压缩字符串 II

行程长度编码 是一种常用的字符串压缩方法,它将连续的相同字符(重复 2 次或更多次)替换为字符和表示字符计数的数字(行程长度)。例如,用此方法压缩字符串 “aabccc” ,将 “aa” 替换为 “a2” ,“ccc” 替换为` “c3” 。因此压缩后的字符串变为 “a2bc3” 。
注意,本问题中,压缩时没有在单个字符后附加计数 ‘1’ 。
给你一个字符串 s 和一个整数 k 。你需要从字符串 s 中删除最多 k 个字符,以使 s 的行程长度编码长度最小。
请你返回删除最多 k 个字符后,s 行程长度编码的最小长度 。
示例 1:
输入:s = “aaabcccd”, k = 2
输出:4
解释:在不删除任何内容的情况下,压缩后的字符串是 “a3bc3d” ,长度为 6 。最优的方案是删除 ‘b’ 和 ‘d’,这样一来,压缩后的字符串为 “a3c3” ,长度是 4 。
示例 2:
输入:s = “aabbaa”, k = 2
输出:2
解释:如果删去两个 ‘b’ 字符,那么压缩后的字符串是长度为 2 的 “a4” 。
示例 3:
输入:s = “aaaaaaaaaaa”, k = 0
输出:3
解释:由于 k 等于 0 ,不能删去任何字符。压缩后的字符串是 “a11” ,长度为 3 。
提示:
1 <= s.length <= 100
0 <= k <= s.length
s 仅包含小写英文字母

动态规划

预处理

将s转成arr,每个元素是{字符,长度}。
比如:aabbaa变成{{‘a’,2},{'b",2},{‘a’,2}}
长度0,表示0个字符。长度1,表示1个字符。长度2,表示2到9.长度3,表示10到99,长度4,表示100及以上。

动态规划的状态表示

pre[j] 表示处理完arr[0,i)后, 用去j个字符的最短行程码。
dp[j] 表示处理完arr[0,i]后, 用去j个字符的最短行程码。
pre2[ch][j][m] 表示处理完arr[0,i)后,,以ch+'a’结尾,用去j个字符,最后有m个ch的最短行程码。
dp2表示处理完arr[0,i]…

动态规划的转移方程

arr[i]没有和前面的元素合并:
枚举j,枚举减少长度:0、1、2、3、4
arr[j]和前面的合并:
枚举j,m 再枚举减少长度:0、1、2、3 、4
合并示例:aa d d ‾ \underline{dd} ddaa 删除dd后,就是4个aa了。

动态规划的初始状态

pre[0]=0,其它100。
pre2全部100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

pre.back().back()

代码

核心代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int lenArr = s.length();vector<pair<char, int>> arr;for (int left = 0, i = 0; i <= s.length(); i++){if ((i >= s.length()) || (s[left] != s[i])){arr.emplace_back(s[left], i - left);left = i;}}vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};auto MaxLen = [&vLen](int len){return vLen[len + 1] - 1;};vector<int> pre(lenArr + 1, 100);pre[0] = 0;vector<vector<vector<int>>> dp3(26, vector<vector<int>>(lenArr+1, vector<int>(lenArr + 1, 100)));for (const auto& [ch, cnt] : arr){vector<int> dp(lenArr + 1, 100);auto& dp2 = dp3[ch - 'a'];auto pre2 = dp2;auto Update = [&lenArr,&dp,&dp2](int j, int iCodeLen,const char& chEnd,int iEndLen){if (j > lenArr){return;}dp[j] = min(dp[j], iCodeLen);if (iEndLen <= lenArr){dp2[j][iEndLen] = min(dp2[j][iEndLen], iCodeLen);}};			//处理没合并for (int j = 0; j <= lenArr; j++){	const int curCodeLen = GetCodeLen(cnt);Update(j + cnt, pre[j] + curCodeLen,ch,cnt);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2,ch, MaxLen(curCodeLen2));}}for (int j = 0; j <= lenArr; j++){for (int m = 0; m <= j; m++){const int curCodeLen = GetCodeLen(cnt+m );Update(j + cnt, pre2[j][m] - GetCodeLen(m) + GetCodeLen(m + cnt), ch, m + cnt);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j -m + MaxLen(curCodeLen2), pre2[j][m] - GetCodeLen(m) + curCodeLen2,ch, MaxLen(curCodeLen2));}}}pre.swap(dp);	}return *std::min_element(pre.begin() + pre.size() - k-1, pre.end());}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	string s;int k;{Solution sln;s = "aaa", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(1, res);}{Solution sln;s = "aaab", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(2, res);}{Solution sln;s = "aaabcccd", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(4, res);}{Solution sln;s = "aabbaa", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(2, res);}{Solution sln;s = "aaaaaaaaaaa", k = 0;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(3, res);}{Solution sln;s = "spnskpulpsiqagreoajsltdrdlnpsdqapmsdlnlirasgfijafeoqjnddpaifsqpghshclqummgootsmkcgneofrkboirkplqijoi", k = 25;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(3, res);}}

动态规划优化

前一个解法的空间复杂度在过与不过的边缘。

动态规划的状态表示

dp[i][j] 表示处理了arr[0,i),选择了j个字符的最短行程码。

动态规划的转移方程

分两种情况: 和前面的项目合并,和前面的项不合并。细节同上。

动态规划的初始值

dp[0][0]=0,其它100。

动态规划的填表顺序

i从小到大,j从小到大。

动态规划的返回值

dp.back的后k+1个元素的最小值。

优化后的代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int lenArr = s.length();vector<pair<char, int>> arr;for (int left = 0, i = 0; i <= s.length(); i++){if ((i >= s.length()) || (s[left] != s[i])){arr.emplace_back(s[left], i - left);left = i;}}vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};auto MaxLen = [&vLen](int len){return vLen[len + 1] - 1;};vector<vector<int>> dp(arr.size() + 1, vector<int>(lenArr + 1, 100));dp[0][0] = 0;int i = -1;for (const auto& [ch, cnt] : arr){i++;auto& pre = dp[i];auto& cur = dp[i + 1];auto Update = [&lenArr, &cur](int j, int iCodeLen){if (j > lenArr){return;}cur[j] = min(cur[j], iCodeLen);};//处理没合并for (int j = 0; j <= lenArr; j++){const int curCodeLen = GetCodeLen(cnt);Update(j + cnt, pre[j] + curCodeLen);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2);}}int cnt2 = 0;for (int m = i ; m >= 0; m--){if (arr[m].first != ch){continue;}cnt2 += arr[m].second;//合并后的字符数		const int curCodeLen = GetCodeLen(cnt2);for (int j = 0; j <= lenArr; j++){Update(j + cnt2, dp[m][j] + curCodeLen);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), dp[m][j] + curCodeLen2);}}}			}return *std::min_element(dp.back().begin() + dp.back().size() - k - 1, dp.back().end());}
};

动态规划三

arr数组,少许提升性能,但增加了复杂度,不采用。

动态规划的状态

dp[i][j]表示 从s[0,i)中删除j个字符 最短的行程码。

动态规划的转移方程

令x = dp[i+1][j]
情况一:删除s[i+1]
那x等于dp[i][j-1] 公式一
情况二:不删除,且可能和前面的字符结合后,删除。
不市一般性,令s[i]=‘a’,且它的前面只有三个’a’,小标分别为i1,i2,i3。
情况a:
s[i]没有和其它’a’结合,则x= dp[i][j]+GetCodeLen (1)。 公式二
情况b:
s[i]和s[i3]结合,s(i3,i)之间非’a’的数量为diff,全部删除。
b1: i和i3 都没删除。 x = dp[i3][j-diff] + GetCodeLen(2) → \rightarrow dp[i-diff-1][j-diff] + GetCodeLen(2) 公式三
b2: i3删除。x = dp[i3][j-diff-1] + GetCodeLen(1) → \rightarrow dp[i-diff-1][j-diff-1] + GetCodeLen(1) 就是公式二和公式一结合。
情况c:
s[i]和s[i2] s[i3]结合: s(i2,i)之间非’a’的数量为diff2,全部删除。
c1,不删除’a’。 dp[i2][j-diff2] + GetCodeLen(3) ** 公式四**
c2,删除一个’a’ dp[i2][j-diff2-1] + GetCodeLen(2) → \rightarrow dp[i-diff2-2][j-diff2-1]+GetCodeLen(2) 就是公式三和公式的结合,不需要枚举。
c3 删除两个’a’。dp[i-diff2-2][j-diff2-2] + GetCodeLen(1) 就是公式二和公式一结合,不用枚举。
总结:
无论多少个字符结合,全删除就是公式一。
保留一个就是公式二。
保留三个就是公式三。

m个字符结合,只需要枚举m个字符,mm个字符(mm < m )枚举mm个字符结合的时候考虑。

可以这样理解:
m个字符合并后,删除m-mm个,保留mm个。 保留任意mm个都一样,那保留后mm个。所以只需要枚举:保留后mm个。

动态规划的初始值

dp[0][0] = 0,其它100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

dp.back()的最小值。

代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int n = s.length();		vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};vector<vector<int>> dp(n + 1, vector<int>(k + 1, 100));dp[0][0] = 0;for (int i = 0; i < n; i++){//处理删除s[i]for (int j1 = 1; j1 <= min(i+1,k); j1++){dp[i+1][j1] = dp[i][j1-1];}//处理不删除s[i]for (int same = 0, diff = 0, preLen = i;preLen>=0; preLen--){if (s[preLen] == s[i]){same++;for (int j1 = diff; j1 <= min(i + 1, k); j1++){dp[i + 1][j1] = min(dp[i + 1][j1], dp[i + 1 - same - diff][j1 - diff] + GetCodeLen(same));}					}else{diff++;}}}		return *std::min_element(dp.back().begin() , dp.back().end());}
};

2023年2月 第一版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
int pre[100 + 1][27][101];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][101];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(100, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre,dp, sizeof(pre));
}
int iMin = INT_MAX;
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
iMin = 4;
}
}
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月 第二版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/653794.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis详解(6)-- 分页及缓存

MyBatis详解&#xff08;6&#xff09; 分页缓存特点&#xff1a;限制&#xff1a;术语&#xff1a;加载分类立即加载&#xff1a;延迟加载&#xff1a;mybatis缓存&#xff1a; 缓存的适用性MyBatis 缓存分类一级缓存注意&#xff1a;一级缓存未命中二级缓存二级缓存的优劣自定…

qq通讯录怎么关闭?QQ好友删除了怎么恢复?

在QQ中&#xff0c;通讯录是我们管理好友和进行聊天的重要工具&#xff0c;但有时候我们可能需要一些隐私保护&#xff0c;不让一些用户通过手机通讯录添加自己。如果您正在思考qq通讯录怎么关闭以及恢复意外删除的好友&#xff0c;本文将为您详细介绍如何关闭QQ通讯录和恢复被…

php实现多进程的几种方式

目录 一&#xff1a;使用pcntl扩展库 二&#xff1a;使用Swoole扩展 三&#xff1a;使用多进程模式PHP-FPM 在PHP中实现多进程主要有以下几种方式&#xff1a; 一&#xff1a;使用pcntl扩展库 pcntl扩展库提供了多线程相关的函数&#xff0c;如pcntl_fork()用于创建子进程…

详解操作系统各章大题汇总(死锁资源分配+银行家+进程的PV操作+实时调度+逻辑地址->物理地址+页面置换算法+磁盘调度算法)

文章目录 第三章&#xff1a;死锁资源分配图例一例二 第三章&#xff1a;银行家算法第四章&#xff1a;进程的同步与互斥做题步骤PV操作的代码小心容易和读者写者混 1.交通问题&#xff08;类似读者写者&#xff09;分析代码 2.缓冲区问题&#xff08;第二个缓冲区是复制缓冲区…

RK3568驱动指南|驱动基础进阶篇-进阶6 内核运行ko文件实验——系统调用

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…

Idea编写mapper.xml文件提示表名和字段

一、连接database 二、setting- > language -> sql Dialects中 的选项设为 mysql就可以了 三、测试

从零开始做题:逆向 ret2shellcode orw

1.题目信息 BUUCTF在线评测 下载orw时防病毒要关闭 2.题目分析 orw是open、read、write的简写。有时候binary会通过prctl、seccomp进行沙箱保护&#xff0c;并不能getshell。只能通过orw的方式拿到flag。 fdopen&#xff08;‘./flag’); # 打开flag文件&#xff0c;得到fd…

Android MTE技术详解

1.MTE概念 MTE&#xff08;内存标记扩展&#xff09;是ARM v8.5-A新增的一项缓解内存安全的机制。在Android Linux现有的安全机制中&#xff0c;类似的机制有ASAN、HWSAN。但两者因为性能开销代价高昂&#xff0c;不适用于广泛部署&#xff08;仅调试使用&#xff09;。MTE当前…

语义分割 | 基于 VGG16 预训练网络和 Segnet 架构实现迁移学习

Hi&#xff0c;大家好&#xff0c;我是源于花海。本文主要使用数据标注工具 Labelme 对猫&#xff08;cat&#xff09;和狗&#xff08;dog&#xff09;这两种训练样本进行标注&#xff0c;使用预训练模型 VGG16 作为卷积基&#xff0c;并在其之上添加了全连接层。基于标注样本…

【算法专题】动态规划综合篇

动态规划7.0 1. 最长公共子序列2. 不相交的线3. 不同的子序列4. 通配符匹配5. 正则表达式匹配6. 交错字符串7. 两个字符串的最小ASCII删除和8. 最长重复子数组 1. 最长公共子序列 题目链接 -> Leetcode -1143.最长公共子序列 Leetcode -1143.最长公共子序列 题目&#xf…

单张图像三维重建RealFusion 360◦ Reconstruction of Any Object from a Single Image

Luke Melas-Kyriazi&#xff0c; Iro Laina&#xff0c; Christian Rupprecht&#xff0c; Andrea Vedaldi.RealFusion 360◦ Reconstruction of Any Object from a Single Image。RealFusion: 360 Reconstruction of Any Object from a Single Image Abstract We consider th…

升降机SEW MOVIDRIVE变频器设置

SEW变频器Startup 安装好MOVITOOL软件 打开项目开始配置通信连接 以太网连接为例 在此栏输入需要连接的SEW变频器的IP地址,例如:172.25.20.120 设置完成单击“OK” 当设置完成后,请一路OK回到软件管理画面 通信配置正确的软件界面状态 单击红色刷新图标 一切准备就绪后…

DjangoURL调度器(一)

一、介绍 当一个用户请求 Django 站点的一个页面&#xff0c;下面是 Django 系统决定执行哪个 Python 代码使用的算法&#xff1a; Django确定要使用的根URLconf模块&#xff0c;一般是在settings中的ROOT_URLCONF设置的值&#xff0c;但是如果传入 HttpRequest 对象具有一个ur…

Pytest 识别case规则

一、Python测试框架&#xff0c;主要特点有以下几点&#xff1a; 简单灵活&#xff0c;容易上手&#xff1b;支持参数化&#xff1b;能够支持简单的单元测试和复杂的功能测试&#xff0c;还可以用来做selenium/appnium等自动化测试、接口自动化测试&#xff08;pytestrequests…

C#简单使用Yolov5的Onnx格式模型进行目标检测

背景 最近要离职了&#xff0c;同事需要了解一下C#如何使用yolov5系列onnx格式模型进行目标检测&#xff0c;由于其对C#不熟练&#xff0c;可能会影响公司后续的开发进度&#xff0c;所以趁着还在&#xff0c;赶紧把手尾搞好。 方案 1、创建一个C# DotNet 8 控制台项目[可千…

LabVIEW动态数据交换实现数据通信

LabVIEW动态数据交换实现数据通信 介绍了LabVIEW软件在驱动一般多功能接口卡中的应用。LabVIEW作为一种图形化编程平台&#xff0c;被广泛应用于自动测量系统、工业过程自动化等领域。利用LabVIEW驱动实验室中常用的多功能接口卡&#xff0c;以实现数据采集和分析。 系统主要…

bxCAN 主要特性

bxCAN 主要特性 ● 支持 2.0 A 及 2.0 B Active 版本 CAN 协议 ● 比特率高达 1 Mb/s ● 支持时间触发通信方案 发送 ● 三个发送邮箱 ● 可配置的发送优先级 ● SOF 发送时间戳 接收 ● 两个具有三级深度的接收 FIFO ● 可调整的筛选器组&#xff1a; — CAN1 和…

Go语言的100个错误使用场景(一)|代码和项目组织

前言 大家好&#xff0c;这里是白泽。 《Go语言的100个错误以及如何避免》 是最近朋友推荐我阅读的书籍&#xff0c;我初步浏览之后&#xff0c;大为惊喜。就像这书中第一章的标题说到的&#xff1a;“Go: Simple to learn but hard to master”&#xff0c;整本书通过分析100…

ASP .NET Core Api 使用过滤器

过滤器说明 过滤器与中间件很相似&#xff0c;过滤器&#xff08;Filters&#xff09;可在管道&#xff08;pipeline&#xff09;特定阶段&#xff08;particular stage&#xff09;前后执行操作。可以将过滤器视为拦截器&#xff08;interceptors&#xff09;。 过滤器级别范围…

MATLAB环境下一种音频降噪优化方法—基于时频正则化重叠群收缩

语音增强是语音信号处理领域中的一个重大分支&#xff0c;这一分支已经得到国内外学者的广泛研究。当今时代&#xff0c;随着近六十年来的不断发展&#xff0c;己经产生了许多有效的语音增强算法。根据语音增强过程中是否利用语音和噪声的先验信息&#xff0c;语音增强算法一般…