论文阅读:Distortion-Free Wide-Angle Portraits on Camera Phones

论文阅读:Distortion-Free Wide-Angle Portraits on Camera Phones

今天介绍一篇谷歌 2019 年的论文,是关于广角畸变校正的。

Abstract

广角摄影,可以带来不一样的摄影体验,因为广角的 FOV 更大,所以能将更多的内容拍摄进画面,在多人集体合影的时候,一般用广角可以将大家都拍到,但是广角摄影也有弊端,最显著的问题就是畸变,随着 FOV 的增加,画面边缘的人很容易发生变形,比如人头,身体被拉伸。这种畸变让画面边缘的人与真实的人差异很大。这篇论文就是为了解决广角摄影下的畸变问题的。给定一张广角下的人像照,文章中的算法是通过构建一个能量优化函数,将球极投影下的人脸区域与透视投影下的背景区域的位移 mesh 进行联合优化,从而达到一个畸变校正的目的。这篇文章里的算法最后应该是用到了谷歌的 Pixel 手机中了。

Introduction

文章中首先提到了畸变的几种成因, camera 成像是遵循透视投影规律的,透视成像投影的规律就是近大远小,同时视场边缘的成像随着入射角的增加,会产生更大的透视形变,这种形变是由透视投影的客观规律产生的,无法避免。此外镜头本身也会有光学畸变,这是属于光学像差的一种,FOV 越大的镜头,这种光学畸变也会越明显,光学畸变会导致直线弯曲,不过相比透视畸变,镜头的光学畸变有比较成熟的校正方法,比如经典的张正友校正法,通过标定棋盘格,可以估计出镜头的畸变参数,从而进行镜头的光学畸变校正。

不过,即使进行了镜头的光学畸变校正,成像的透视畸变依然存在,所以这篇文章主要是为了解决镜头的透视畸变问题,作者在文章中也提到,他们提出的方法也属于与内容相关的 warping 方法,这类方法之前也广泛地应用于各种图像的操作中,比如全景的拼接,广角的畸变校正,防抖等。本文主要聚焦于人脸区域的 warp,作者认为对于人像摄影来说,用户对人脸的形状是最敏感的。

Method

文章的方法,看起来流程比较简单,如下所示:

在这里插入图片描述

给定一张输入图片,首先是用一个分割模型,将人脸区域分割出来;然后将人脸区域进行球极投影;接着利用一个能量函数,将球极投影后的人脸区域 mesh 与背景区域的 mesh 进行优化,使得人脸区域与背景区域的 mesh 能够平滑过度,最终利用输出的 mesh 对全图进行 warp,这样就得到了校正后的图像。

Subject Mask Segmentation

人脸区域分割,这个已经非常成熟了,有很多的分割模型都可以做到这一点。这里就不多做介绍了。

Stereographic Projection

这篇文章对人脸区域的校正利用了一种称为 Stereographic Projection,也就是球极投影,球极投影是一种将 3D 物体投影到 2D 平面的投影方式,这种投影方式可以最大限度的保持物体的形状,不过代价就是会让直线变得弯曲,文章也给出了几种不同投影的例子

在这里插入图片描述

可以看到,对于一张有透视畸变的图像,人像的脸已经有明显的拉伸,通过 Stereographic projection 或者 Mercator projection,人脸得到比较好地校正,但是背景的直线已经产生了明显的弯曲,这就类似一种鱼和熊掌不可兼得的感觉,你想保证背景直线是直的,人脸区域会被拉伸,类似输入图;反过来,你想让人脸区域得到校正,背景直线又变得弯曲。所以文章作者想到了一种联合优化的方式,这个后面详细介绍,先来看看球极投影到底是个啥。

文章给出的球极投影的定义如下:

r u = r 0 tan ⁡ ( 0.5 arctan ⁡ ( r p f ) ) (1) r_u = r_0 \tan (0.5 \arctan(\frac{r_p}{f})) \tag{1} ru=r0tan(0.5arctan(frp))(1)

其中 f f f 是镜头的焦距, r u , r p r_u, r_p ru,rp 分别表示球极投影以及透视投影下以镜头中心作为参考的半径, r 0 r_0 r0 表示一个 scale 系数,保证两种投影下面图像边缘的所对应的半径是相等的

r 0 = d 2 tan ⁡ ( 0.5 arctan ⁡ ( d 2 f ) ) (2) r_0 = \frac{d}{2 \tan (0.5 \arctan(\frac{d}{2f}))} \tag{2} r0=2tan(0.5arctan(2fd))d(2)

其中, d = min ⁡ { W , H } d = \min\{W, H\} d=min{W,H},表示图像宽高中的较小值。

Mesh Placement

接下来介绍 mesh 的构建,mesh 可以看成是一个网格图,一个 mesh 包含一组网格点 { v i } \{ \mathbf{v}_i \} {vi} v i \mathbf{v}_i vi 是一个向量,表示网格点对应的二维坐标,假设输入图对应的 mesh 图是 { p i } \{ \mathbf{p}_i \} {pi},对输入图 mesh 上的每个网格点应用球极变换,可以得到一组新的网格点,以及一个新的 mesh, { u i } \{ \mathbf{u}_i \} {ui},这两个 mesh 对应网格点的坐标差,其实就是位移向量场,通过这个位移向量场,可以进行 warp,不过正如前面所说,如果直接 warp,人脸区域虽然得到了校正,但是背景会产生扭曲。当然,一种最直观的方法,就是将人脸区域的 mesh 与背景区域的 mesh 分开处理,人脸区域的 mesh 用球极投影下的 mesh,而背景区域依然用之前输入的 mesh。如下式所示:

w i = { 0 if p i ∉ face mask 1 if p i ∈ face mask (3) w_i = \begin{cases} 0 \quad \text{if} \quad \mathbf{p}_i \notin \text{face mask} \\ 1 \quad \text{if} \quad \mathbf{p}_i \in \text{face mask} \\ \end{cases} \tag{3} wi={0ifpi/face mask1ifpiface mask(3)

不过这种方式依然会有问题,文章也给出了示意图,这种直接粗暴地分成两部分的方式,也会到底非常明显的 artifacts

Local Face Undistortion

为了解决这个问题,文章作者提出了一种能量优化的方式,文章中构造了一个如下的能量优化函数:

v i ∗ = argmin v i E t ( v i ) (4) \mathbf{v_{i}^{*}} = \text{argmin}_{\mathbf{v_{i}}} E_t(\mathbf{v_{i}}) \tag{4} vi=argminviEt(vi)(4)

E t E_t Et 可以认为是几种不同的能量函数的加权和。

Face Objective Term

首先是人脸区域的能量项,每个人脸区域都构建一个能量项,所有人脸区域的能量项求和,可以得到整体的人脸区域的能量项

E f = ∑ k E s , k (5) E_f = \sum_{k} E_{s, k} \tag{5} Ef=kEs,k(5)

其中, k k k 表示输入图中人脸的编号,可以看到,这个能量项是对每个人脸区域单独构建的,有多少个人脸,就会构建多少个能量项,每个能量项的定义如下:

E s , k = ∑ i ∈ B k w i m i ∥ v i − ( S k u i + t k ) ∥ 2 2 + λ ( S k ) (6) E_{s,k} = \sum_{i\in\mathbf{B}_k} w_i m_i \left \| \mathbf{v}_i - (\mathbf{S_k \mathbf{u}_i + \mathbf{t}_k}) \right \|_{2}^{2} + \lambda(\mathbf{S}_k) \tag{6} Es,k=iBkwimivi(Skui+tk)22+λ(Sk)(6)

其中, w i w_i wi 表示公式 (3) 定义的权重, { u i } \{ \mathbf{u}_i \} {ui} 表示球极投影 mesh 上的网格点, { B k } \{ \mathbf{B}_k \} {Bk} 表示第 k 个人脸区域中的网格点,因为图像不同区域的畸变程度不同,需要校正的强度也就不同,所以上面的能量项还加了一个 m i m_i mi 来调整权重,这个 m_i 服从一个径向函数的分布

m i ∼ 1 1 + exp ⁡ ( ( − ( r − r a ) / r b ) ) m_i \sim \frac{1}{1 + \exp((-(r-r_a)/r_b))} mi1+exp(((rra)/rb))1

其中, r r r 表示输入图像中的半径, r a , r b r_a,r_b rarb 是两个超参,用来控制强度的,对于图像中心的点,保证 m i = 0.01 m_i = 0.01 mi=0.01,对于图像边缘的点,保证 m i = 1.0 m_i=1.0 mi=1.0。从公式 (6) 可以看出,虽然文章是用球极投影来解决人脸的畸变,但是最终优化的时候,并不是简单地直接用球极投影的网格点,而是用了一个仿射变换来拟合,

S k = [ a k b k − b k a k ] t k = [ t k 1 t k 2 ] (7) \mathbf{S}_k = \begin{bmatrix} a_k & b_k \\ -b_k & a_k \end{bmatrix} \quad \mathbf{t}_k = \begin{bmatrix} t_{k1} \\ t_{k2} \end{bmatrix} \tag{7} Sk=[akbkbkak]tk=[tk1tk2](7)

这个仿射变换,可以让每个人脸区域的球极投影有更大的自由度,在球极投影的基础上,进行适当的自适应调整。公式 (7) 中的 a k a_k ak 是一个缩放系数,文章作者加了一个正则项来控制这个系数:

λ ( S k ) = w s ∥ a k − s t ∥ 2 2 (8) \lambda(\mathbf{S}_k) = w_s \left \| a_k - s_t \right \|_{2}^{2} \tag{8} λ(Sk)=wsakst22(8)

文章中设置的 w s = 2000 , s t = 1 w_s = 2000, s_t = 1 ws=2000,st=1

Line-Bending Term

人脸区域的能量项介绍完了,下面看看背景区域的能量项,文章中设置了一个能量项来保证让直线等比缩放而不是扭曲:

E b = ∑ i ∑ j ∈ N ( i ) ∥ ( v i − v j ) × e i j ∥ 2 2 (9) E_{b} = \sum_{i} \sum_{j \in N(i)} \left \| (\mathbf{v}_i - \mathbf{v}_j) \times \mathbf{e}_{ij} \right \|_{2}^{2} \tag{9} Eb=ijN(i)(vivj)×eij22(9)

其中, e i j \mathbf{e}_{ij} eij 是沿着方向 p i − p j \mathbf{p}_i - \mathbf{p}_j pipj 的单位向量。 N ( i ) N(i) N(i) 表示网格点 i i i 的邻域

Regularization Term

最后,文章中引入了一个平滑的能量项,

E r = ∑ i ∑ j ∈ N ( i ) ∥ ( v i − v j ) ∥ 2 2 (10) E_{r} = \sum_{i} \sum_{j \in N(i)} \left \| (\mathbf{v}_i - \mathbf{v}_j) \right \|_{2}^{2} \tag{10} Er=ijN(i)(vivj)22(10)

Mesh Boundary Extension

文章中也提到,对于图像边缘的点,如果强制让其不移动的话,当人脸处于图像边缘的时候,会产生很明显的扭曲,为了解决这个问题,文章中采用网格扩展的方式,在原图的 mesh 基础上,往外扩展几个网格,同时让这些处于边界的网格点满足如下的约束:

{ v i , x = p i , x if p i ∈ left or right boundary v i , y = p i , y if p i ∈ top or bottom boundary (11) \begin{cases} v_{i,x} = p_{i,x} \quad \text{if} \quad \mathbf{p}_i \in \text{left or right boundary} \\ v_{i,y} = p_{i,y} \quad \text{if} \quad \mathbf{p}_i \in \text{top or bottom boundary} \\ \end{cases} \tag{11} {vi,x=pi,xifpileft or right boundaryvi,y=pi,yifpitop or bottom boundary(11)

这个约束保证了边界的点只会沿着边界移动,同时,为了减少 mesh warping 出现的未定义区域,文章中还利用了一个能量项,让原始 mesh 边缘的网格点尽量往外扩,而不是往内缩:

E a = E l + E r + E t + E b (12) E_a = E_l + E_r + E_t + E_b \tag{12} Ea=El+Er+Et+Eb(12)

{ E l = I ( v i , x > 0 ) ⋅ ∥ v i , x ∥ 2 2 , ∀ i ∈ ∂ l e f t E r = I ( v i , x < W ) ⋅ ∥ v i , x − W ∥ 2 2 , ∀ i ∈ ∂ r i g h t E t = I ( v i , y > 0 ) ⋅ ∥ v i , y ∥ 2 2 , ∀ i ∈ ∂ t o p E b = I ( v i , y < H ) ⋅ ∥ v i , y − H ∥ 2 2 , ∀ i ∈ ∂ b o t t o m (13) \begin{cases} E_l = \Bbb I(v_{i,x} > 0) \cdot \left \| v_{i,x} \right \|_{2}^{2}, \forall i\in \partial_{left} \\ E_r = \Bbb I(v_{i,x} < W) \cdot \left \| v_{i,x} -W \right \|_{2}^{2}, \forall i\in \partial_{right} \\ E_t = \Bbb I(v_{i,y} > 0) \cdot \left \| v_{i,y} \right \|_{2}^{2}, \forall i\in \partial_{top} \\ E_b = \Bbb I(v_{i,y} < H) \cdot \left \| v_{i,y} - H \right \|_{2}^{2}, \forall i\in \partial_{bottom} \\ \tag{13} \end{cases} El=I(vi,x>0)vi,x22,ileftEr=I(vi,x<W)vi,xW22,irightEt=I(vi,y>0)vi,y22,itopEb=I(vi,y<H)vi,yH22,ibottom(13)

Optimization

最后的能量函数,就是将前面定义的能量函数加权:

E t = λ f E f + λ b E b + λ r E r + λ a E a (14) E_t = \lambda_{f}E_f + \lambda_{b}E_b + \lambda_{r}E_r + \lambda_{a}E_a \tag{14} Et=λfEf+λbEb+λrEr+λaEa(14)

对应权重分别设为:4,2,0.5,4

为了加速优化,文章在初始化的时候,也做了一些 trick:

在这里插入图片描述

最后 warp 的时候,文章中将优化得到的 mesh 还做了一个类似归一化的操作:

v n , i = s g ( v i ∗ + t g ) t g = − v 0 ∗ \mathbf{v}_{n, i} = s_g(\mathbf{v}_{i}^{*} + \mathbf{t}_g) \quad \mathbf{t}_g = -\mathbf{v}_{0}^{*} vn,i=sg(vi+tg)tg=v0

最后的效果还是不错的,具体的样例可以看文章的 project 网站:

https://people.csail.mit.edu/yichangshih/wide_angle_portrait/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/65316.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

单片机的ADC

如何理解ADC。ADC就是将模拟量转换成数字量的过程&#xff0c;就是转换为计算机所能存储的0和1序列&#xff0c;比如将模拟量转换为一个字节&#xff0c;所以这个字节的大小要能反应模拟量的大小&#xff0c;比如一个0-5V的电压测量量&#xff08;外部输入电压最小0V,最大为5V&…

websocket基础

下面就以代码来进行说明 1&#xff0c;先导入websocket依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency> 2.编写websocket相关bean管理配置 Config…

Unity生命周期函数

1、Awake 当对象&#xff08;自己这个类对象&#xff0c;就是这个脚本&#xff09;被创建时 才会调用该生命周期函数 类似构造函数的存在 我们可以在一个类对象创建时进行一些初始化操作 2、OnEnable 失活激活&#xff08;这个勾&#xff09; 想要当一个对象&#xff08;游戏…

【杂言】写在研究生开学季

这两天搬进了深研院的宿舍&#xff0c;比中南的本科宿舍好很多&#xff0c;所以个人还算满意。受台风 “苏拉” 的影响&#xff0c;原本的迎新计划全部打乱&#xff0c;导致我现在都还没报道。刚开学的半个月将被各类讲座、体检以及入学教育等活动占满&#xff0c;之后又是比较…

ZDH-权限模块

本次介绍基于ZDH v5.1.2版本 目录 项目源码 预览地址 安装包下载地址 ZDH权限模块 ZDH权限模块-重要名词划分 ZDH权限模块-菜单管理 ZDH权限模块-角色管理 ZDH权限模块-用户配置 ZDH权限模块-权限申请 项目源码 zdh_web: GitHub - zhaoyachao/zdh_web: 大数据采集,抽…

ROS 2官方文档(基于humble版本)学习笔记(一)

ROS 2官方文档&#xff08;基于humble版本&#xff09;学习笔记&#xff08;一&#xff09; 一、安装ROS 2二、按教程学习1.CLI 工具配置环境使用turtlesim&#xff0c;ros2和rqt安装 turtlesim启动 turtlesim使用 turtlesim安装 rqt使用 rqt重映射关闭turtlesim 由于市面上专门…

关于 MySQL、PostgresSQL、Mariadb 数据库2038千年虫问题

MySQL 测试时间&#xff1a;2023-8 启动MySQL服务后&#xff0c;将系统时间调制2038年01月19日03时14分07秒之后的日期&#xff0c;发现MySQL服务自动停止。 根据最新的MySQL源码&#xff08;mysql-8.1.0&#xff09;分析&#xff0c;sql/sql_parse.cc中依然存在2038年千年虫…

java八股文面试[多线程]——Synchronized优化手段:锁膨胀、锁消除、锁粗化和自适应自旋锁

1.锁膨胀 &#xff08;就是锁升级&#xff09; 我们先来回顾一下锁膨胀对 synchronized 性能的影响&#xff0c;所谓的锁膨胀是指 synchronized 从无锁升级到偏向锁&#xff0c;再到轻量级锁&#xff0c;最后到重量级锁的过程&#xff0c;它叫锁膨胀也叫锁升级。 JDK 1.6 之前…

MATLAB中mod函数转化为C语言

背景 有项目算法使用matlab中mod函数进行运算&#xff0c;这里需要将转化为C语言&#xff0c;从而模拟算法运行&#xff0c;将算法移植到qt。 MATLAB中mod简单介绍 语法 b mod(a,m) 说明 b mod(a,m) 返回 a 除以 m 后的余数&#xff0c;其中 a 是被除数&#xff0c;m 是…

详解Vue中的render: h => h(App)

声明:只是记录&#xff0c;会有错误&#xff0c;谨慎阅读 我们用脚手架初始化工程的时候&#xff0c;main.js的代码如下 import Vue from vue import App from ./App.vueVue.config.productionTip falsenew Vue({// 把app组件放入容器中render: h > h(App), }).$mount(#ap…

FPGA 学习笔记:Vivado 工程管理技巧

前言 当前使用 Xilinx 的 FPGA,所以需要熟悉 Xilinx FPGA 的 开发利器 Vivado 的工程管理方法 这里初步列举一些实际 Xilinx FPGA 开发基于 Vivado 的项目使用到的工程的管理技巧 代码管理 做过嵌入式软件或者其他软件开发的工程技术人员,都会想到使用代码管理工具,如 SVN 、…

Python入门教程 - 基本语法 (一)

目录 一、注释 二、Python的六种数据类型 三、字符串、数字 控制台输出练习 四、变量及基本运算 五、type()语句查看数据的类型 六、字符串的3种不同定义方式 七、数据类型之间的转换 八、标识符命名规则规范 九、算数运算符 十、赋值运算符 十一、字符串扩展 11.1…

AtCoder Beginner Contest 318

目录 A - Full Moon B - Overlapping sheets C - Blue Spring D - General Weighted Max Matching E - Sandwiches F - Octopus A - Full Moon #include<bits/stdc.h> using namespace std; const int N1e65; typedef long long ll ; const int maxv4e65; typedef …

mac使用VsCode远程连接服务器总是自动断开并要求输入密码的解决办法

在mac中使用vscode远程连接服务器&#xff0c;时常会出现自动断开并要求重新输入服务器密码的问题&#xff0c;接下来让我们来解决它&#xff1a; 1、首先&#xff0c;在本地创建公钥&#xff1a; ssh-keygen 这条命令执行之后&#xff0c;出现提示直接回车即可&#xff1b;直…

内网穿透神器-frp的概念,搭建和使用,方便访问内网服务

FRP概念 FRP是什么(借助官网的描述)&#xff1f; frp 是一个专注于内网穿透的高性能的反向代理应用&#xff0c;支持 TCP、UDP、HTTP、HTTPS 等多种协议&#xff0c;且支持 P2P 通信。可以将内网服务以安全、便捷的方式通过具有公网 IP 节点的中转暴露到公网。 为什么是用FR…

CSS流光按钮-圆形

主要思路 仅保留一条边框 border-radius 50%drop-shadow动画 animation keyframes 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, …

WireShark流量抓包详解

目录 Wireshark软件安装Wireshark 开始抓包示例Wireshakr抓包界面介绍WireShark 主要界面 wireshark过滤器表达式的规则 Wireshark软件安装 软件下载路径&#xff1a;wireshark官网。按照系统版本选择下载&#xff0c;下载完成后&#xff0c;按照软件提示一路Next安装。 Wire…

排盘程序算法探寻举例(陆先生八字)

算法实现&#xff1a; 1.庚生未月&#xff0c;燥土不能生金&#xff0c;日支申金为日主墙根&#xff0c;月干辛金比劫透出傍身&#xff0c;月干强。年干甲木自做寅木强根&#xff0c;又得月支乙木中气&#xff0c;甲木强旺有力&#xff0c;时干丙火七杀得未土余气&#xff0c;…

高频面试题:如何分别用三种姿势实现三个线程交替打印0到100

最近面试遇到的一道题&#xff0c;需要三个线程交替打印0-100&#xff0c;当时对多线程并不是很熟悉因此没怎么写出来&#xff0c;网上搜了之后得到现 synchronized wait/notifyAll 实现思路&#xff1a;判断当前打印数字和线程数的取余&#xff0c;不等于当前线程则处于等待…

前端常使用的一些网站

一.echarts Examples - Apache ECharts 身为一个资深的前端工程师 echarts 肯定是必不可少的呀 二. echarts社区 series-line折线图 - makeapie echarts社区图表可视化案例 这里面有各种大神 封装好的图例 拉下来直接使用即可 三. Element Element - The worlds most po…