简单爬取历史房价
需求
爬取的网站汇聚数据的城市房价
https://fangjia.gotohui.com/
功能
选择城市
https://fangjia.gotohui.com/fjdata-3
需要爬取年份的数据,等等
https://fangjia.gotohui.com/years/3/2018/
使用bs4模块
使用bs4模块快速定义需要爬取的表格
代码
from urllib.request import urlopenimport pandas as pd
from bs4 import BeautifulSoup
import urllib.request
import timeheaders = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 Edg/108.0.1462.54'}# 发送网络请求获取网页内容
def get_page_data(data_url, headers):req = urllib.request.Request(data_url, headers=headers)content = urllib.request.urlopen(req).read() # .decode('GBK')content = content.decode('utf-8') # python3page = BeautifulSoup(content, 'html.parser')return page# 按格式输出价格
def get_date(date, year):date_str = ''if date == '1月':date_str = year + '-' + '01'elif date == '2月':date_str = year + '-' + '02'elif date == '3月':date_str = year + '-' + '03'elif date == '4月':date_str = year + '-' + '04'elif date == '5月':date_str = year + '-' + '05'elif date == '6月':date_str = year + '-' + '06'elif date == '7月':date_str = year + '-' + '07'elif date == '8月':date_str = year + '-' + '08'elif date == '9月':date_str = year + '-' + '09'elif date == '10月':date_str = year + '-' + '10'elif date == '11月':date_str = year + '-' + '11'elif date == '12月':date_str = year + '-' + '12'return date_str# 使用bs4内网页内容进行提取
def analyse_data(page, year):table = page.find('table', attrs={'class': 'ntable table-striped'})trs = table.find_all('tr')[3:]df_data = pd.DataFrame(columns=['date', 'price'])time.sleep(1)count = 0for tr in trs:tds = tr.find_all('td')date = tds[0].textdate = get_date(date,year)new = tds[1].textnew = new[:6]df_data.loc[count] = [date, new]count += 1return df_dataif __name__ == '__main__':data_url = 'https://fangjia.gotohui.com/fjdata-3'year = ['2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021', '2022', '2023']all_datas = []file_path = "data.txt"# 遍历多年的数据for i in year:url = 'https://fangjia.gotohui.com/years/3/' + i + '/'page = get_page_data(url, headers)df_data = analyse_data(page, i)print(df_data)# 将数据保存到txt文件文件中,(存在编码问题后续解决)df_data1 = str(df_data)with open(file_path, 'a',encoding='utf-8') as file:file.write(df_data1)
运行效果
保存到文件