(笔记五)利用opencv进行图像几何转换

参考网站:https://docs.opencv.org/4.1.1/da/d6e/tutorial_py_geometric_transformations.html

(1)读取原始图像和标记图像

import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltpath = r"D:\data\flower.jpg"
img = cv.imread(path)
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)# 拷贝图像
img1 = np.copy(img)
img1[100:105, 100:105, :] = [255, 0, 0]  # main point is (103, 103)
img1[100:105, 150:155, :] = [255, 0, 0]  # main point is (103, 153)
img1[150:155, 100:105, :] = [255, 0, 0]  # main point is (153, 103)
img1[150:155, 150:155, :] = [255, 0, 0]  # main point is (153, 153)
plt.figure(12)
plt.subplot(211), plt.imshow(img), plt.title('ori img'), plt.axis('off')
plt.subplot(212), plt.imshow(img1), plt.title('changed 4-points ori img'), plt.axis('off')
# plt.show()

在这里插入图片描述

(2)改变图像分辨率

# 改变分辨率
img2 = np.copy(img)
# dsize = None,fx是x相对于原来的x要改变的比例,同理y
img3 = cv.resize(img2, None, fx=0.1, fy=0.1, interpolation=cv.INTER_CUBIC)
img4 = cv.resize(img2, None, fx=10, fy=10, interpolation=cv.INTER_CUBIC)
plt.figure(3)
plt.subplot(311), plt.imshow(img), plt.title('ori img resolution:' + str(img.shape[0:2])), plt.axis('off')
plt.subplot(312), plt.imshow(img3), plt.title('0.1 times resolution:' + str(img3.shape[0:2])), plt.axis('off')
plt.subplot(313), plt.imshow(img4), plt.title('10 times resolution:' + str(img4.shape[0:2])), plt.axis('off')
# plt.show()

在这里插入图片描述

(3)平移图像

核心函数:cv.warpAffine(img, M, (col, row))

在这里插入图片描述

# 图像平移
img5 = np.copy(img)
row, col, sp = img5.shape
M1 = np.float32([[1, 0, 100], [0, 1, 50]])  # x平移100,y平移50
print('图像平移:')
print('图像平移所计算的转换矩阵为:', M1)
img6 = cv.warpAffine(img5, M1, (col, row))  # warpAffine函数利用转移矩阵平移
plt.figure(4)
plt.subplot(211), plt.imshow(img), plt.title('ori img'), plt.axis('off')
plt.subplot(212), plt.imshow(img6), plt.title('Translation x for 100 and y for 50'), plt.axis('off')
# plt.show()

在这里插入图片描述
在这里插入图片描述

(4)图像旋转

核心函数:M=cv.getRotationMatrix2D(((旋转中心坐标(x,y)), 旋转角度, 相向尺度因子)
cv.warpAffine(img, M, (col, row))

在这里插入图片描述

# 图像旋转
img7 = np.copy(img)
# 图像中心,图像旋转角度,图像同向比例因子
M2 = cv.getRotationMatrix2D(((col - 1) / 2, (row - 1) / 2), 45, 1)
M3 = cv.getRotationMatrix2D(((col - 1) / 2, (row - 1) / 2), 0, 3)
print('图像旋转:')
print('旋转一的转换矩阵:', M2)
print('旋转二的转换矩阵:', M3)
img8 = cv.warpAffine(img7, M2, (col, row))
img9 = cv.warpAffine(img7, M3, (col, row))
plt.figure(5)
plt.subplot(311), plt.imshow(img), plt.title('ori img'), plt.axis('off')
plt.subplot(312), plt.imshow(img8), plt.title('Rotation angle is 45°'), plt.axis('off')
plt.subplot(313), plt.imshow(img9), plt.title('Isotropic scale factor is 3'), plt.axis('off')
# plt.show()

在这里插入图片描述
在这里插入图片描述

(5)图像仿射变换

核心函数:M=cv.getAffineTransform(原图三个点坐标, 转换图三个点坐标)
cv.warpAffine(img, M, (col, row))

在这里插入图片描述

# 仿射变换
img10 = np.copy(img1)
points_one = np.float32([[103, 103], [103, 153], [153, 103]])  # 原始图像三个点坐标
points_two = np.float32([[10, 100], [100, 10], [150, 275]])  # 仿射变换目标图像的三个点坐标
M4 = cv.getAffineTransform(points_one, points_two)
print('仿射变换:')
print('仿射变换的转换矩阵:', M4)
img11 = cv.warpAffine(img10, M4, (col, row))
plt.figure(6)
plt.subplot(211), plt.imshow(img1), plt.title('ori 4-points img'), plt.axis('off')
plt.subplot(212), plt.imshow(img11), plt.title('Affine Transformation img'), plt.axis('off')
# plt.show()

在这里插入图片描述
在这里插入图片描述

(6)图像透射变换

核心函数:M=cv.getPerspectiveTransform(原图四个点坐标,转换图像四个点坐标 )

在这里插入图片描述

cv.warpPerspective(img, M, (转换图长宽))

在这里插入图片描述

# 透射变换
img12 = np.copy(img1)
points_one_one = np.float32([[103, 103], [103, 153], [153, 103], [153, 153]])  # 原始图像四个点坐标
points_two_two = np.float32([[0, 0], [0, 300], [300, 0], [300, 300]])  # 透射变换目标图像的四个点坐标
M5 = cv.getPerspectiveTransform(points_one_one, points_two_two)
print('透射变换:')
print('透射变换的转换矩阵:', M5)
# img12为要转换的图像,M5为透射变换的转换矩阵,dsize为目标图像大小
img13 = cv.warpPerspective(img12, M5, (300, 300))
plt.figure(7)
plt.subplot(211), plt.imshow(img1), plt.title('ori 4-points img'), plt.axis('off')
plt.subplot(212), plt.imshow(img13), plt.title('Perspective Transformation img'), plt.axis('off')
plt.show()

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/65045.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis-监听过期key-JAVA实现方案

一、创建监听配置类 RedisListenerConfig。 import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.d…

图文详解PhPStudy安装教程

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 官方下载 请在PhPStudy官方网站下载安装文件,官方链接如下:https://m.xp.cn/linux.html;图示如下: 请下载PhPStudy安装文件…

QML与C++的交互操作

QML旨在通过C 代码轻松扩展。Qt QML模块中的类使QML对象能够从C 加载和操作,QML引擎与Qt元对象系统集成的本质使得C 功能可以直接从QML调用。这允许开发混合应用程序,这些应用程序是通过混合使用QML,JavaScript和C 代码实现的。除了从QML访问…

OpenCV(十五):拷贝图像

在OpenCV中,拷贝图像数据时有两种方式:深拷贝(Deep Copy)和浅拷贝(Shallow Copy)。这两种拷贝方式的主要区别在于是否创建新的图像副本。 浅拷贝(Shallow Copy)是指将图像对象的指针…

Python中的计数器Counter

计数器counter是包含在collections模块中的容器。 什么是容器Container? 容器是容纳对象的对象。它们提供了一种访问所包含对象并对其进行迭代的方法。内置容器的例子有元组、列表和字典。其他内容包含在“collections”模块中。 Counter是dict的子类。因此&#…

WebGIS的一些学习笔记

一、简述计算机网络的Internet 概念、网络类型分类、基本特征和功用是什么 计算机网络的Internet 概念 计算机网络是地理上分散的多台独立自主的计算机遵循约定的通讯协议,通过软、硬件互连以实现交互通信、资源共享、信息交换、协同工作以及在线处理等功能的系统…

LabVIEW液压支架控制系统的使用与各种配置的预测模型的比较分析

LabVIEW液压支架控制系统的使用与各种配置的预测模型的比较分析 模型预测控制在工业中应用广泛。这种方法的优点之一是在求解最优控制问题时能够明确考虑对输入和输出状态施加的约束。控制对象模型用于有限时间范围内最优控制的实时计算。所使用的数学设备允许从具有单输入和单…

12 mysql char/varchar 的数据存储

前言 这里主要是 由于之前的一个 datetime 存储的时间 导致的问题的衍生出来的探究 探究的主要内容为 int 类类型的存储, 浮点类类型的存储, char 类类型的存储, blob 类类型的存储, enum/json/set/bit 类类型的存储 本文主要 的相关内容是 char 类类型的相关数据的存储 …

电子邮件服务器

目录 一、相关知识 二、邮件服务器种类 三、邮件传输协议 四、DNS中的MX记录 五、电子邮件系统工作原理 六、配置文件相关参数 七、邮件服务器配置案例 7.1设置用户别名邮箱 7.2空壳邮件服务器 一、相关知识 1、电子邮箱系统三个组成部分 MUA(telnet):邮…

ATF(TF-A)安全通告 TFV-1 (CVE-2016-10319)

安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-1 (CVE-2016-10319) 二、CVE-2016-10319 一、ATF(TF-A)安全通告 TFV-1 (CVE-2016-10319) Title 错误的固件更新SMC可能导致意外的大数据拷贝到安全内存中CVE ID CVE-2016-10319 Da…

JSX底层渲染机制

JSX底层渲染机制 一,.步骤 1.把我们写的jsx语法编译为虚拟DOM【virtualDOM】 虚拟DOM对象:框架自己内部构建的一套对象体系(对象的相关成员都是React内部绑定的),基于这些属性描述出我们所构建视图中的DOM接的相关特征 1基于ba…

python中如何不修改字符串的前提,使其对大小写字母不敏感

如果你希望在不修改原字符串的基础上实现大小写不敏感的比较,你可以使用内置函数str.casefold(),它会将字符串转换为小写并处理一些特殊字符,使得比较更加严格。下面是如何使用它来实现大小写不敏感的比较: x input() y input()…

通讯软件014——分分钟学会Matrikon HDA Explorer

本文介绍如何使用Matrikon HDA Explorer工具软件进行OPC HDA通讯调试。相关软件可登录网信智汇(wangxinzhihui.com)下载。 1、连接OPC HDA Server数据源“Kepware.KEPServerEX HAD.V6”。 2、添加标签:右键点击“Kepware.KEPServerEX HAD.V6”…

Oracle-day6:over()函数

目录 一、over()开窗函数 二、无参over()的使用 三、over(partition by 列名) 四、over(order by 列名 asc/desc) 五、over(partition by 列名 order by 列名 asc|desc) 六、练习(笔试) 一、over()开窗函数 拓展:数据库的版本 oracle:8i 9i 10g …

信息化发展16

计算机网络 从网络的作用范围可将网络类别划分为个人局域网( Per sona l Area Net work,PAN) >局域网C Local Area Net work, LAN ) > 城域网( Metropoli tan Areaetwork , MAN ) 、广域网( Wide Area Net…

王道考研数据结构

文章目录 C 环境准备官方文档环境准备在线运行VSCode 环境报错解决 绪论线性表顺序表链表错题 栈、队列和数组栈队列栈的应用之中缀转后缀特殊矩阵用数组压缩存储错题 串模式匹配之暴力和KMP 树与二叉树二叉树树和森林哈夫曼树和哈夫曼编码并查集错题 图图的基本概念图的存储及…

一文读懂MQTT各参数定义(非ChatGPT生成版)

文章目录 前言主流使用MQTT协议的云平台连接参数连接参数详解1.服务器地址(Server Address)2.端口(Port)3.客户端标识符(Client Identifier)4.用户名和密码(Username and Password)5…

[音视频] SDL 渲染

调用的 API SDL_INIT # 初始化 SDL 库 SDL_CreateWIndow # 创建窗口 SDL_CreateRenderer # 创建渲染器 需要指定渲染窗口 SDL_CreateTexture # 需要指定纹理的上下文 和 数据修改频率 SDL_UpdateTexuture # 把 cpu 数据拷贝到 gpu 纹理中 SDL_RenderClear # 清空窗口纹理 SDL_…

Python 新版本有75个内置函数,你不会不知道吧

目录 Python 内置函数 前言 属性分类 模块 module 29. format() 35. help() 对象 object 17. copyright() 18. credits() 26. exit() 44. license() 59. quit() 类 class 08. bool() 10. bytearray() 11. bytes() 14. classmethod() 16. complex() 20. dict…

记一次postgres导致cpu100%

周末想打两把训练赛,没想到朋友发来一个截图 我:嗯??wtf 于是我上服务器看了一下日志,诶我超,还真的 查看进程详情 [rootiZ7xv7q4im4c48qen2do2bZ project]# pstree -tp postgres memory(904475)─┬─…