<蓝桥杯软件赛>零基础备赛20周--第18周--动态规划初步

报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集
20周的完整安排请点击:20周计划
每周发1个博客,共20周。
在QQ群上交流答疑:

在这里插入图片描述

文章目录

  • 1. 动态规划的概念
  • 2. 动态规划的两种编码方法
  • 3. DP设计基础
  • 4. 常见线性DP
  • 5. DP习题

第18周:动态规划初步

  动态规划(Dynamic Programming,DP)是Richard Bellman于1950年代发明的应用于多阶段决策的数学方法。和贪心、分治一样,动态规划是一种解题的思路,而不是一个具体的算法知识点。动态规划是地地道道的“计算思维”,非常适合用计算机实现,可以说是独属于计算机学科的计算理论。动态规划是一种需要学习才能获得的思维方法。像贪心、分治这样的方法,在生活中,或在其他学科中有很多类似的例子,很容易联想和理解。但动态规划不是,它是一种生活中没有的抽象计算方法,没有学过的人很难自发产生这种思路。
  DP是算法竞赛中最常见的考点之一,蓝桥杯大赛的每一场比赛,每次必有DP题目,少则一题,多则数题。以2023年第十四届蓝桥杯省赛为例,
  C/C++:A组“更小的数”、B组“接龙数列”、C组“填充”、研究生组“奇怪的数”。
  Java:A组“高塔”、B组“ 数组分割,蜗牛,合并石子”、C组“填充”、研究生组“奇怪的数”。
  Python:A组“奇怪的数”、B组“松散子序列,保险箱,树上选点”、C组“填充,奇怪的数”、研究生组“填充,高塔”。
  能做DP题目,就有蓝桥杯省赛二等奖的实力。

1. 动态规划的概念

  本节以斐波那契数为例说明DP的概念和编程实现。
  斐波那契数列是一个递推数列,前几个数是1、1、2、3、5、8,第n个数等于第n-1个和第n-2个相加。斐波那契数的递推公式是:
    fib(n) = fib(n-1) + fib(n-2)
  斐波那契数列又称为兔子数列。设一对兔子每月能生一对小兔子,小兔子在出生的第一个月没有生殖能力,第二个月便能生育,且所有兔子都不会死亡。从第一对刚出生的兔子开始,问12个月以后会有多少对兔子。
在这里插入图片描述

  斐波那契数列也常常用楼梯问题来举例。一次可以走一个台阶或者两个台阶,问走到第n个台阶时,一共有多少种走法?要走到第n级台阶,分成两种情况,一种是从n-1级台阶走一步过来,一种是从n-2级台阶走两步过来。这就是斐波那契数列的递推公式。
  计算斐波那契数列,可以直接用递推公式计算。这里为了说明动态规划的思想,用递归来求斐波那契数,代码如下。

int fib (int n){if (n == 1 || n == 2)      return 1;return (fib (n-1) + fib (n-2));  //递归以2的倍数增加
}

  为了解决总体问题fib(n),将其分解为两个较小的子问题fib(n-1)和fib(n-2),这就是DP的应用场景。
  有一些问题有两个特征:重叠子问题、最优子结构。用DP可以高效率地处理具有这2个特征的问题。
  (1)重叠子问题
  首先,子问题是原大问题的小版本,计算步骤完全一样;其次,计算大问题的时候,需要多次重复计算小问题。这就是“重叠子问题”。以斐波那契数为例,用递归计算fib(5),分解为图示的子问题。
在这里插入图片描述
        图1 计算斐波那契数
  其中fib(3)计算了2次,其实只算1次就够了。
  一个子问题的多次重复计算,耗费了大量时间。用DP处理重叠子问题,每个子问题只需要计算一次,从而避免了重复计算,这就是DP效率高的原因。
  (2)最优子结构
  最优子结构的意思是:首先,大问题的最优解包含小问题的最优解;其次,可以通过小问题的最优解推导出大问题的最优解。在斐波那契问题中,把数列的计算构造成fib(n) = fib(n-1) + fib(n-2),即把原来为n的大问题,减小为n-1和n-2的小问题,这是斐波那契数的最优子结构。

2. 动态规划的两种编码方法

  处理DP中的大问题和小问题,有两种思路:自顶向下(Top-Down,先大问题再小问题)、自下而上(Bottom-Up,先小问题再大问题)。
  编码实现DP时,自顶向下用带记忆化搜索的递归编码,自下而上用递推编码。两种方法的复杂度是一样的,每个子问题都计算一遍,而且只计算一遍。
  (1)自顶向下与记忆化
  先考虑大问题,再缩小到小问题,递归很直接地体现了这种思路。为避免递归时重复计算子问题,可以在子问题得到解决时,就保存结果,再次需要这个结果时,直接返回保存的结果就行了。这种存储已经解决的子问题的结果的技术称为“记忆化(Memoization)”。
  以斐波那契数为例,记忆化代码如下:

int memoize[N];                                  //保存结果
int fib (int n){if (n == 1 || n == 2)  return 1;if(memoize[n] != 0) return memoize[n]; //直接返回保存的结果,不再递归memoize[n]= fib (n - 1) + fib (n - 2);       //递归计算结果,并记忆return memoize[n];
}

  在这个代码中,一个斐波那契数只计算一次,所以总复杂度是O(n)的。
  (2)自下而上与制表递推
  这种方法与递归的自顶向下相反。这种“自下而上”的方法,先解决子问题,再递推到大问题。通常通过填写表格来完成,编码时用若干for循环语句填表。根据表中的结果,逐步计算出大问题的解决方案。
  用制表法计算斐波那契数,维护一个一维表dp[],记录自下而上的计算结果,更大的数是前面两个数的和。
在这里插入图片描述
代码:

const int N = 255;
int dp[N];
int fib (int n){dp[1] = dp[2] =1;for (int i=3;i<=n;i++)  dp[i] = dp[i-1] +dp[i-2];return dp[n];
}

  把表格dp[]称为DP状态,dp[]的转移方程是dp[i] = dp[i-1] +dp[i-2]。
  代码的复杂度显然也是O(n)的。
  对比“自顶向下”和“自下而上”这两种方法,“自顶向下”的优点是能更宏观地把握问题、认识问题的实质,“自下而上”的优点是编码更直接。两种编码方法都很常见。
  能用DP求解的问题,一般是求方案数,或者求最值

3. DP设计基础

  用下面的例子讲解DP的基本问题:状态设计、状态转移、编码实现。


更小的数 2023年第十四届省赛C/C++大学A组,10分
【题目描述】 有一个长度均为n且仅由数字字符0 ~ 9组成的字符串,下标从0到n-1。你可以将其视作是一个具有n位的十进制数字num。小蓝可以从num中选出一段连续的子串并将子串进行反转,最多反转一次。小蓝想要将选出的子串进行反转后再放入原位置处得到的新的数字numnew满足条件numnew < num。请你帮他计算下一共有多少种不同的子串选择方案。只要两个子串在num中的位置不完全相同我们就视作是不同的方案。注意,我们允许前导零的存在,即数字的最高位可以是0,这是合法的。
【输入描述】输入一行包含一个长度为n的字符串表示num(仅包含数字字符0 ∼9),从左至右下标依次为 0 ∼n−1。对于20%的评测用例,1≤n≤100;对于40%的评测用例,1≤n≤1000;对于所有评测用例,1≤n≤5000。
【输出描述】输出一个整数表示答案。
输入样例:
210102 输出样例:
8


  如果读者没学过动态规划,也能用模拟法做这一题。遍历出每个子串,判断这个子串反转后是否合法,也就是判断是否有numnew < num。统计所有合法的情况,就是答案。代码很容易写。

#include<bits/stdc++.h>
using namespace std;
int main() {string s;  cin >> s;int ans = 0;for (int i = 0; i < s.size(); i++) {for (int j = i + 1; j < s.size(); j++) {string tmp = s;reverse(tmp.begin()+i, tmp.begin()+j+1);  //反转子串s[i,j]if (tmp < s)  ans++;}}cout << ans << endl;return 0;
}

java代码

import java.util.Scanner;
public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);String s = sc.next();int ans = 0;for (int i = 0; i < s.length(); i++) {for (int j = i + 1; j < s.length(); j++) {StringBuilder tmp = new StringBuilder(s);tmp.replace(i, j + 1, new StringBuilder(s.substring(i, j + 1)).reverse().toString());if (tmp.toString().compareTo(s) < 0) ans++;                }}System.out.println(ans);}
}

python

s = input()
ans = 0
for i in range(len(s)):for j in range(i + 1, len(s)):tmp = list(s)tmp[i:j+1] = reversed(tmp[i:j+1])if ''.join(tmp) < s:ans += 1
print(ans)

  用两种for循环遍历所有的子串。用库函数reverse()反转子串,如果不会用这个函数,也可以自己写一个反转子串的函数。
  代码的计算复杂度是多少?两重for循环是 O ( n 2 ) O(n^2) O(n2),reverse()是O(n)的,总复杂度为 O ( n 3 ) O(n^3) O(n3)。只能通过40%的测试。
  下面用DP求解本题,复杂度为 O ( n 2 ) O(n^2) O(n2),通过100%的测试。

1、DP状态设计
  本题可以用DP吗?它有DP的重叠子问题和最优子结构吗?
  在模拟法中,需要检查每个子串,为了应用DP,考虑这些子串之间有没有符合DP要求的关系,请读者思考。下面的DP状态设计和DP转移方程体现了子串之间的DP关系。
  DP状态:定义二维数组dp[][],dp[i][j]表示子串s[i]~s[j]反转之后是否大于反转前的子串。dp[i][j]=1表示反转之后变小,符合要求;dp[i][j]=0表示反转之后没有变小。
  在DP题目中,建议把状态命名为dp,这有利于与队友的交流。队友看到dp这个关键字,用不着解释,就知道这是一道DP题,dp是定义的状态,而不是别的意思。

2、DP转移方程
  对于每个子串,比较它的首尾字符s[i]和s[j],得到状态转移方程。
  (1)若s[i] > s[j],说明反转后的子串肯定小于原子串,符合要求,赋值dp[i][j] = 1。
  (2)若s[i] < s[j],说明反转后的子串肯定大于原子串,赋值dp[i][j] = 0。
  (3)若s[i] = s[j],需要继续比较s[i+1]和s[j-1],有dp[i][j] = dp[i+1][j-1]。
  第(3)条的dp[i][j] = dp[i+1][j-1]是自顶向下的思路,例如dp[1][6] = dp[2][5],dp[2][5] = dp[3][4],等等。
  计算这个递推公式时,需要先算出较小子串的dp[][],再递推到较大子串的dp[][]。例如先要计算出dp[2][5],才能递推到dp[1][6]。最小子串的dp[][],例如dp[1][1]、dp[1][2]、dp[2][2]、dp[2][3]等,它们不再需要递推,因为dp[1][1]=0,dp[1][2]根据(1)、(2)计算。

3、代码
  根据上述思路,读者可能很快就写出了以下代码。

#include<bits/stdc++.h>
using namespace std;
int dp[5010][5010];
int main() {string s;   cin >> s;int ans = 0;for (int i = 0; i < s.length(); i++) {         //子串从s[i]开始for (int j = i+1; j < s.length(); j++) {   //子串末尾是s[j]if (s[i] > s[j])  dp[i][j] = 1;if (s[i] < s[j])  dp[i][j] = 0;if (s[i] == s[j]) dp[i][j] = dp[i + 1][j - 1];if (dp[i][j] == 1) ans++;}}cout << ans;
}

  代码的计算复杂度:两重for循环 O ( n 2 ) O(n^2) O(n2),优于前面模拟法代码的 O ( n 3 ) O(n^3) O(n3)
  代码看起来逻辑很清晰,但它其实是错误的。问题出在第7、8行的for循环。例如第7行i=0,第8行j=8时,递推得dp[0][8]=dp[1][7],但是此时dp[1][7]已经计算过吗?并没有。
  递推的时候,根据DP的原理,应该先算出小规模问题的解,再递推大规模问题的解。计算应该这样进行:
  (1)初始化:dp[][]=0,其中的dp[0][0]=0、dp[1][1]=0、…、dp[1][0]、…,在后续计算中有用。
  (2)第一轮递推:计算长度为2的子串的dp[][],即计算出dp[0][1]、dp[1][2]、dp[2][3]、…。例如计算dp[0][1],若s0>s1,则dp[0][1]=1;若s0<s1,则dp[0][1]=0;若s0=s1,则dp[0][1]=dp[1][0]=0,这里dp[1][0]=0是初始化得到的。
  (3)第二轮递推:计算长度为3的子串的dp[][],即计算出dp[0][2]、dp[1][3]、dp[2][4]、…。例如计算dp[0][2],若s0=s2,则有dp[0][2]=dp[1][1]=0,这时用到了前面得到的dp[1][1]。
  (4)第三轮递推:计算长度为4的子串的dp[][],即计算出dp[0][3]、dp[1][4]、dp[2][5]、…。例如计算dp[0][3],若s0=s3,则有dp[0][3]=dp[1][2],这时用到了前面得到的dp[1][2]。
  (5)继续递推,最后得到所有的dp[][]。
  代码应该这样写,用循环变量k表示第k轮递推,或者表示递推长度为k+1的子串:
C++代码:

#include<bits/stdc++.h>
using namespace std;
int dp[5010][5010];                     //全局数组,初始化为0
int main() {string s; cin >> s;int ans = 0;for (int k = 1; k < s.length(); k++) {        //第k轮递推。k=j-ifor (int i = 0; i+k < s.length(); i++) {  //子串从s[i]开始int j = i+k;                          //子串末尾是s[j]if (s[i] > s[j])  dp[i][j] = 1;if (s[i] < s[j])  dp[i][j] = 0;if (s[i] == s[j]) dp[i][j] = dp[i + 1][j - 1];if (dp[i][j] == 1)  ans++;}}cout << ans;
}

java代码

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc = new Scanner(System.in);String s = sc.next();int[][] dp = new int[5010][5010];int ans = 0;for (int k = 1; k < s.length(); k++) {for (int i = 0; i + k < s.length(); i++) {int j = i + k;if (s.charAt(i) > s.charAt(j)) dp[i][j] = 1;                if (s.charAt(i) < s.charAt(j)) dp[i][j] = 0;if (s.charAt(i) == s.charAt(j))dp[i][j] = dp[i + 1][j - 1];                if (dp[i][j] == 1)  ans++;}}System.out.println(ans);}
}

python代码

s = input()
dp = [[0] * 5010 for _ in range(5010)]
ans = 0
for k in range(1, len(s)):for i in range(len(s) - k):j = i + kif s[i] > s[j]:    dp[i][j] = 1if s[i] < s[j]:    dp[i][j] = 0if s[i] == s[j]:   dp[i][j] = dp[i + 1][j - 1]if dp[i][j] == 1:  ans += 1
print(ans)

4、对比DP代码和模拟代码
  DP代码和模拟代码的相同处:它们都需要计算所有的子串,共 O ( n 2 ) O(n^2) O(n2)个子串。
  为什么DP代码的效率更高呢?
  (1)模拟代码对每个子串的计算是独立的。每个子串的计算和其他子串无关,不用其他子串的计算结果,自己的计算结果对其他子串的计算也没有用。每个子串需要计算O(n)次, O ( n 2 ) O(n^2) O(n2)个子串的总计算量是 O ( n 3 ) O(n^3) O(n3)的。
  (2)DP的子串计算是相关的。长度为2的子串计算结果,在计算长度为3的子串时用到;长度为3的子串计算结果,在计算长度为4的子串时用到;…等等。所以一个子串的计算量只有O(1), O ( n 2 ) O(n^2) O(n2)个子串的总计算量是 O ( n 2 ) O(n^2) O(n2)的。这就是DP利用“重叠子问题”得到的计算优化。

4. 常见线性DP

  线性DP是蓝桥杯省赛最常考核的题型。
  本博客写过类似的博文,请参考:DP概述和常见DP面试题

  非线性DP,蓝桥杯省赛可能考到的有:树形DP、状态压缩DP、数位DP。这属于较难的知识了,初学者以后再学。见专辑:DP专题

5. DP习题

  2023年第14届省赛的DP题很多,大多是线性DP,大家可以作为练习题:

  C/C++:A组“更小的数”、B组“接龙数列”、C组“填充”、研究生组“奇怪的数”。

  Java:A组“高塔”、B组“ 数组分割,蜗牛,合并石子”、C组“填充”、研究生组“奇怪的数”。

  Python:A组“奇怪的数”、B组“松散子序列,保险箱,树上选点”、C组“填充,奇怪的数”、研究生组“填充,高塔”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/650291.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP.NET 7 Core Web 读取appsetting.json

把一些配置信息保存在json文件可以避免更改时要重新发布程序的烦恼。 我这里使用的是写一个类文件&#xff0c;然后通过program.cs启动的方式&#xff08;.net 6 开始没有startup了&#xff09;。 项目类型&#xff1a;ASP.NET Core Web MVC / .NET 7.0 / VS2022 第一步…

基于机器学习的地震预测(Earthquake Prediction with Machine Learning)

基于机器学习的地震预测&#xff08;Earthquake Prediction with Machine Learning&#xff09; 一、地震是什么二、数据组三、使用的工具和库四、预测要求五、机器学习进行地震检测的步骤六、总结 一、地震是什么 地震几乎是每个人都听说过或经历过的事情。地震基本上是一种自…

锂电池基本知识与设计

应用&#xff1a;笔记本电脑、智能手机等设备。 优点&#xff1a;较高能量密度和较长使用寿命&#xff0c;放电率低&#xff0c;可进一步延长充电间隔时间。 缺点&#xff1a;过度充电或者放电会产生不可逆的损伤&#xff0c;性能降低。高温环境下容易爆炸或者着火。 &#x…

el-tree基础的树形节点设置节点不能选中高亮出来,对已经选中的节点设置disabled,对当前节点刚选中后设置禁用disabled

一、 el-tree基础的树形节点设置节点不能选中高亮出来 需求 我们使用element-ui或者element-plus的时候会遇到树形控件的使用&#xff0c;我们使用树形控件会限制有的节点不让选中和高亮出来&#xff0c;这个时候需要我们做限制。在实现中我们发现了element-ui和element-plus…

WSL2+ubuntu 18+VsCode 配置C/C++开发环境 踩坑

1. 管理员模式打开cmd&#xff0c;或PowerShell &#xff0c;输入 wsl --install 可能出现的错误&#xff1a;无法解析服务器名称或地址 解决方式&#xff1a;科学上网 安装WSL时遇到“无法解析服务器名称或地址”的错误及解决方法 - 知乎 错误2&#xff1a;Error 0x8037…

Python tkinter (6) Listbox

Python的标准Tk GUI工具包的接口 tkinter系列文章 python tkinter窗口简单实现 Python tkinter (1) —— Label标签 Python tkinter (2) —— Button标签 Python tkinter (3) —— Entry标签 Python tkinter (4) —— Text控件 GUI 目录 Listbox 创建listbox 添加元素…

TPCC-MySQL

简介 TPC-C是专门针对联机交易处理系统&#xff08;OLTP系统&#xff09;的规范&#xff0c;一般情况下我们也把这类系统称为业务处理系统。 Tpcc-mysql是percona基于TPC-C(下面简写成TPCC)衍生出来的产品&#xff0c;专用于MySQL基准测试。其源码放在launchpad上&#xff0c…

sql 行转列 日周月 图表统计

目录 目录 需求 准备 月 分析 按月分组 行转列 错误版本 正确版本 日 分析 行转列 周 分析 按周分组 行转列 本年 需求 页面有三个按钮 日周月&#xff0c;统计一周中每天(日)&#xff0c;一月中每周(周)&#xff0c;一年中每月(月)&#xff0c;设备台数 点…

8-小程序数据promise化、共享、分包

小程序API Promise化 wx.requet 官网入口 默认情况下&#xff0c;小程序官方异步API都是基于回调函数实现的 wx.request({method: , url: , data: {},header: {content-type: application/json // 默认值},success (res) {console.log(res.data)},fail () {},complete () { }…

Maven命令运行单元测试

使用idea开发多模块项目时,有时别的模块编译不通过会导致不能运行单元测试,这是我们可以使用maven命令来运行单元测试 格式 mvn -DtestDingTalkTest#getAllUsers 命令说明 mvn -Dtest 固定格式 DingTalkTest 单元测试类名 getAllUsers 单元测试方法 单元测试类和单元测试方法…

MySQL--选择数据库(3)

在你连接到 MySQL 数据库后&#xff0c;可能有多个可以操作的数据库&#xff0c;所以你需要选择你要操作的数据库。 从命令提示窗口中选择 MySQL 数据库 在 mysql> 提示窗口中可以很简单的选择特定的数据库。 在 MySQL 中&#xff0c;要选择要使用的数据库&#xff0c;可…

六、Kotlin 类型进阶

1. 类的构造器 & init 代码块 1.1 主构造器 & 副构造器在使用时的注意事项 & 注解 JvmOverloads 推荐在类定义时为类提供一个主构造器&#xff1b; 在为类提供了主构造器的情况下&#xff0c;当再定义其他的副构造器时&#xff0c;要求副构造器必须调用到主构造器…

洛谷C++简单题练习day6—P1830 城市轰炸

day6--P1830 城市轰炸--1.26 习题概述 题目背景 一个大小为 nm 的城市遭到了 x 次轰炸&#xff0c;每次都炸了一个每条边都与边界平行的矩形。 题目描述 在轰炸后&#xff0c;有 y 个关键点&#xff0c;指挥官想知道&#xff0c;它们有没有受到过轰炸&#xff0c;如果有&a…

三件套之三,完美句号,下期有惊喜……

软件简介&#xff1a; 软件【下载地址】获取方式见文末。注&#xff1a;推荐使用&#xff0c;更贴合此安装方法&#xff01; CAXA CAD电子图板2024是一款强大的二维CAD绘图软件&#xff0c;它具有易学易用、稳定高效和性能优越等特点。使用这款软件&#xff0c;用户不仅可以更…

Python网络爬虫实战——实验6:Python实现js逆向与加解密

【实验内容】 本实验主要介绍在数据采集过程中对js代码进行分析从而对加密字段进行解密。 【实验目的】 1、理解js逆向工程的概念 2、学会逆向工程中的加解密分析 【实验步骤】 步骤1 理解js逆向工程的概念 步骤2 学会逆向工程中的加解密分析 步骤3 采集广东政府采购网 步…

Jmeter接口测试-websocket测试

壹 Jmeter接口测试-websocket测试 测试之前的准备工作,需要websocket插件 方式一: 去github下载: https://github.com/maciejzaleski/JMeter-WebSocketSampler/wiki/Dependencies jetty-http-9.1.2.v20140210.jarjetty-io-9.1.2.v20140210.jarjetty-util-9.1.2.v20140210…

真香一个团队协作工具部署

部署 version: "3.4"services:mongo:image: mongocontainer_name: twake-dbvolumes:- /opt/Twake/data:/data/dbnode:image: twaketech/twake-node:latestcontainer_name: twake-webports:- 3345:3000# - 8000:3000environment:- DEVproduction- SEARCH_DRIVERmong…

IndexedDB

Web SQL Database | Can I use... Support tables for HTML5, CSS3, etc IndexedDB | Can I use... Support tables for HTML5, CSS3, etc 为什么websql被废弃&#xff1f;_笔记大全_设计学院 WebSQL有兼容、性能、安全问题&#xff0c;要考虑使用IndexedDB替代。 一文看懂 In…

幻兽帕鲁搭建私服,一键更新方法

看着帕鲁这么火&#xff0c;估计更新会变为常态了&#xff0c;如果有自己搭建私服的话&#xff0c;跟着我下面的方法去进行更新吧&#xff01; 如果你还没有自己的私服&#xff0c;快去三五十搞一个吧&#xff0c;只需三五分钟&#xff0c;叫上你的小伙伴一起去搞起来吧 只需3分…

【自然语言处理的发展】

自然语言处理的发展 自然语言处理&#xff08;NLP&#xff09;作为人工智能领域的一个分支&#xff0c;旨在让计算机理解和生成人类语言。随着深度学习和大数据技术的不断进步&#xff0c;NLP在近年来取得了显著的突破。本文将探讨NLP技术的发展历程、最新技术进展以及未来展望…