Executors工具类

concurrent包提供了Executors工具类,jdk基于Executors提供了很多种线程池。

public class Executors {/*** Creates a thread pool that reuses a fixed number of threads*/public static ExecutorService newFixedThreadPool(int nThreads) {return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());}/*** Creates a thread pool that maintains enough threads to support*/public static ExecutorService newWorkStealingPool(int parallelism) {return new ForkJoinPool(parallelism,ForkJoinPool.defaultForkJoinWorkerThreadFactory,null, true);}/*** Creates a work-stealing thread pool using all*/public static ExecutorService newWorkStealingPool() {return new ForkJoinPool(Runtime.getRuntime().availableProcessors(),ForkJoinPool.defaultForkJoinWorkerThreadFactory,null, true);}/*** Creates a thread pool that reuses a fixed number of threads*/public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>(),threadFactory);}/*** Creates an Executor that uses a single worker thread operating*/public static ExecutorService newSingleThreadExecutor() {return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));}/*** Creates an Executor that uses a single worker thread operating*/public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>(),threadFactory));}/*** Creates a thread pool that creates new threads as needed, but* will reuse previously constructed threads when they are* available. */public static ExecutorService newCachedThreadPool() {return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());}public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>(),threadFactory);}/*** Creates a single-threaded executor that can schedule commands* to run after a given delay, or to execute periodically.*/public static ScheduledExecutorService newSingleThreadScheduledExecutor() {return new DelegatedScheduledExecutorService(new ScheduledThreadPoolExecutor(1));}public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {return new DelegatedScheduledExecutorService(new ScheduledThreadPoolExecutor(1, threadFactory));}public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {return new ScheduledThreadPoolExecutor(corePoolSize);}public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory) {return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);}......

1.newFixedThreadPool

这个线程池特别的是线程数是固定的

public static ExecutorService newFixedThreadPool(int nThreads) {return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}

构建时,需要给newFixedThreadPool方法提供一个nThreads的属性,而这个属性其实就是当前线程池中线程的个数。当前线程池的本质其实就是使用ThreadPoolExecutor。

构建好当前线程池后,线程个数已经固定好**(线程是懒加载,在构建之初,线程并没有构建出来,而是随着人任务的提交才会将线程在线程池中国构建出来)**。如果线程没构建,线程会待着任务执行被创建和执行。如果线程都已经构建好了,此时任务会被放到LinkedBlockingQueue无界队列中存放,等待线程从LinkedBlockingQueue中去take出任务,然后执行。

2. newSingleThreadExecutor

这个线程池看名字就知道是单例线程池,线程池中只有一个工作线程在处理任务

如果业务涉及到顺序消费,可以采用newSingleThreadExecutor

/ 当前这里就是构建单例线程池的方式
public static ExecutorService newSingleThreadExecutor() {return new FinalizableDelegatedExecutorService// 在内部依然是构建了ThreadPoolExecutor,设置的线程个数为1// 当任务投递过来后,第一个任务会被工作线程处理,后续的任务会被扔到阻塞队列中// 投递到阻塞队列中任务的顺序,就是工作线程处理的顺序// 当前这种线程池可以用作顺序处理的一些业务中(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));
}static class FinalizableDelegatedExecutorService extends DelegatedExecutorService {// 线程池的使用没有区别,跟正常的ThreadPoolExecutor没区别FinalizableDelegatedExecutorService(ExecutorService executor) {super(executor);}// finalize是当前对象被GC干掉之前要执行的方法// 当前FinalizableDelegatedExecutorService的目的是为了在当前线程池被GC回收之前// 可以执行shutdown,shutdown方法是将当前线程池停止,并且干掉工作线程// 但是不能基于这种方式保证线程池一定会执行shutdown// finalize在执行时,是守护线程,这种线程无法保证一定可以执行完毕。// 在使用线程池时,如果线程池是基于一个业务构建的,在使用完毕之后,一定要手动执行shutdown,// 否则会造成JVM中一堆线程protected void finalize() {super.shutdown();}
}

3. newCachedThreadPool

看名字好像是一个缓存的线程池,查看一下构建的方式

public static ExecutorService newCachedThreadPool() {return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());
}

当第一次提交任务到线程池时,会直接构建一个工作线程

这个工作线程带执行完人后,60秒没有任务可以执行后,会结束

如果在等待60秒期间有任务进来,他会再次拿到这个任务去执行

如果后续提升任务时,没有线程是空闲的,那么就构建工作线程去执行。

最大的一个特点,任务只要提交到当前的newCachedThreadPool中,就必然有工作线程可以处理

4.newScheduleThreadPool

首先看到名字就可以猜到当前线程池是一个可以执行定时任务的线程池,而这个线程池就是可以以一定周期去执行一个任务,或者是延迟多久执行一个任务一次

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {return new ScheduledThreadPoolExecutor(corePoolSize);
}

基于这个方法可以看到,构建的是ScheduledThreadPoolExecutor线程池

public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor{//....
}

所以本质上还是正常线程池,只不过在原来的线程池基础上实现了定时任务的功能
原理是基于DelayQueue实现的延迟执行。周期性执行是任务执行完毕后,再次扔回到阻塞队列。

public static void main(String[] args) throws Exception {ScheduledExecutorService pool = Executors.newScheduledThreadPool(10);// 正常执行
//        pool.execute(() -> {
//            System.out.println(Thread.currentThread().getName() + ":1");
//        });// 延迟执行,执行当前任务延迟5s后再执行
//        pool.schedule(() -> {
//            System.out.println(Thread.currentThread().getName() + ":2");
//        },5,TimeUnit.SECONDS);// 周期执行,当前任务第一次延迟5s执行,然后没3s执行一次// 这个方法在计算下次执行时间时,是从任务刚刚开始时就计算。
//        pool.scheduleAtFixedRate(() -> {
//            try {
//                Thread.sleep(3000);
//            } catch (InterruptedException e) {
//                e.printStackTrace();
//            }
//            System.out.println(System.currentTimeMillis() + ":3");
//        },2,1,TimeUnit.SECONDS);// 周期执行,当前任务第一次延迟5s执行,然后每3s执行一次// 这个方法在计算下次执行时间时,会等待任务结束后,再计算时间pool.scheduleWithFixedDelay(() -> {try {Thread.sleep(3000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(System.currentTimeMillis() + ":3");},2,1,TimeUnit.SECONDS);
}

至于Executors提供的newSingleThreadScheduledExecutor单例的定时任务线程池就不说了。

一个线程的线程池可以延迟或者以一定的周期执行一个任务。

5.newWorkStealingPool

当前JDK提供构建线程池的方式newWorkStealingPool和之前的线程池很非常大的区别

之前定长,单例,缓存,定时任务都基于ThreadPoolExecutor去实现的。

newWorkStealingPool是基于ForkJoinPool构建出来的

ThreadPoolExecutor的核心点

在ThreadPoolExecutor中只有一个阻塞队列存放当前任务
image.pngForkJoinPool的核心特点:

ForkJoinPool从名字上就能看出一些东西。当有一个特别大的任务时,如果采用上述方式,这个大任务只能会某一个线程去执行。ForkJoin第一个特点是可以将一个大任务拆分成多个小任务,放到当前线程的阻塞队列中。其他的空闲线程就可以去处理有任务的线程的阻塞队列中的任务
image.png来一个比较大的数组,里面存满值,计算总和

单线程处理一个任务:

/** 非常大的数组 */
static int[] nums = new int[1_000_000_000];
// 填充值
static{for (int i = 0; i < nums.length; i++) {nums[i] = (int) ((Math.random()) * 1000);}
}
public static void main(String[] args) {// ===================单线程累加10亿数据================================System.out.println("单线程计算数组总和!");long start = System.nanoTime();int sum = 0;for (int num : nums) {sum += num;}long end = System.nanoTime();System.out.println("单线程运算结果为:" + sum + ",计算时间为:" + (end  - start));
}

多线程分而治之的方式处理:

/** 非常大的数组 */
static int[] nums = new int[1_000_000_000];
// 填充值
static{for (int i = 0; i < nums.length; i++) {nums[i] = (int) ((Math.random()) * 1000);}
}
public static void main(String[] args) {// ===================单线程累加10亿数据================================System.out.println("单线程计算数组总和!");long start = System.nanoTime();int sum = 0;for (int num : nums) {sum += num;}long end = System.nanoTime();System.out.println("单线程运算结果为:" + sum + ",计算时间为:" + (end  - start));// ===================多线程分而治之累加10亿数据================================// 在使用forkJoinPool时,不推荐使用Runnable和Callable// 可以使用提供的另外两种任务的描述方式// Runnable(没有返回结果) ->   RecursiveAction// Callable(有返回结果)   ->   RecursiveTaskForkJoinPool forkJoinPool = (ForkJoinPool) Executors.newWorkStealingPool();System.out.println("分而治之计算数组总和!");long forkJoinStart = System.nanoTime();ForkJoinTask<Integer> task = forkJoinPool.submit(new SumRecursiveTask(0, nums.length - 1));Integer result = task.join();long forkJoinEnd = System.nanoTime();System.out.println("分而治之运算结果为:" + result + ",计算时间为:" + (forkJoinEnd  - forkJoinStart));
}private static class SumRecursiveTask extends RecursiveTask<Integer>{/** 指定一个线程处理哪个位置的数据 */private int start,end;private final int MAX_STRIDE = 100_000_000;//  200_000_000: 147964900//  100_000_000: 145942100public SumRecursiveTask(int start, int end) {this.start = start;this.end = end;}@Overrideprotected Integer compute() {// 在这个方法中,需要设置好任务拆分的逻辑以及聚合的逻辑int sum = 0;int stride = end - start;if(stride <= MAX_STRIDE){// 可以处理任务for (int i = start; i <= end; i++) {sum += nums[i];}}else{// 将任务拆分,分而治之。int middle = (start + end) / 2;// 声明为2个任务SumRecursiveTask left = new SumRecursiveTask(start, middle);SumRecursiveTask right = new SumRecursiveTask(middle + 1, end);// 分别执行两个任务left.fork();right.fork();// 等待结果,并且获取sumsum = left.join() + right.join();}return sum;}
}

最终可以发现,这种累加的操作中,采用分而治之的方式效率提升了2倍多。

但是也不是所有任务都能拆分提升效率,首先任务得大,耗时要长。

总结

在《阿里巴巴Java开发手册中》,明确禁止使用Executors创建线程池,并要求开发者直接使用ThreadPoolExecutor或ScheduledThreadPoolExecutor进行创建。这样做是为了强制开发者明确线程池的运行策略,使其对线程池的每个配置参数皆做到心中有数,以规避因使用不当而造成资源耗尽的风险。

相关问题

为什么会有单例线程池?

SingleThreadExecutor 是 Java 线程池的一种特殊类型,它只包含一个工作线程。这个线程按顺序执行提交给它的任务,每次只能执行一个任务。如果当前线程意外终止,线程池会创建一个新的线程来代替它,保证线程的可用性。

SingleThreadExecutor 线程池常用于需要按顺序执行任务的场景,它具有以下特点和优点:

顺序执行:SingleThreadExecutor 保证所有任务按照提交的顺序依次执行,不会并发执行任务。这对于某些需要保持顺序性的任务非常有用,例如需要按照请求的顺序处理的任务队列。线程安全:由于只有一个线程执行任务,不会存在并发访问共享资源的问题,因此不需要考虑线程安全性,可以避免使用锁或其他同步机制。简化编程:通过使用 SingleThreadExecutor,可以简化编程,不必担心多线程带来的竞态条件和线程安全问题,使得代码更易于理解和调试。适用于长时间任务:由于只有一个线程,可以避免频繁的线程切换开销,因此适用于长时间运行的任务,可以减少上下文切换带来的性能损失。

总的来说,SingleThreadExecutor 线程池适用于需要顺序执行任务、需要保持线程安全性、或者需要简化编程的场景。它提供了一种简单有效的方式来管理和执行单线程任务,避免了多线程带来的复杂性和潜在的线程安全问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/650093.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《WebKit技术内幕》学习之十五(2):Web前端的未来

2 嵌入式应用模式 2.1 嵌入式模式 读者可能会奇怪本章重点表达的是Web应用和Web运行平台&#xff0c;为什么会介绍嵌入式模式&#xff08;Embedded Mode&#xff09;呢&#xff1f;这是因为很多Web运行平台是基于嵌入式模式的接口开发出来的&#xff0c;所以这里先解释一下什…

npm create vue3项目特别慢

问题&#xff1a;Vue CLI v5.0.8在配置了淘宝镜像的情况下&#xff0c;创建项目报Failed to check for updates&#xff0c;还特别慢&#xff0c;等了好久都创建不好 查看 npm config get registry更换npm镜像 npm config set registryhttps://registry.npmmirror.com这样创建…

电脑文件pdf怎么转换成word?30秒教你轻松转换

现在我们在工作和学习中经常接触到的文件类型一种是word文件&#xff0c;另一种就是pdf文件啦&#xff0c;这两种文件各有各的有点&#xff0c;适用的使用场景也不太一样&#xff0c;但是难免遇到需要把pdf转word的情况&#xff0c;那么pdf怎么转word呢&#xff1f;除了下载安装…

设计模式—行为型模式之责任链模式

设计模式—行为型模式之责任链模式 责任链&#xff08;Chain of Responsibility&#xff09;模式&#xff1a;为了避免请求发送者与多个请求处理者耦合在一起&#xff0c;于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链&#xff1b;当有请求发生时&am…

华清远见作业第三十二天——C++(第一天)

思维导图&#xff1a; 提示并输入一个字符串&#xff0c;统计字符中大写、小写个数、空格个数以及其他字符个数要求使用C风格完成。 代码&#xff1a; #include <iostream> #include<array> using namespace std;int main() {string str;cout << "请输…

5G时代下的融合CDN新风口

近年来&#xff0c;随着网络技术的飞速发展&#xff0c;互联网流量视频化的趋势日益明显&#xff0c;视频应用使互联网的可扩展性、可演进性、服务质量和网络安全面临诸多挑战。为克服传统IP网络在服务视频应用当中的不足&#xff0c;内容分发网络CDN被提出&#xff0c;并迅速成…

stm32中的SDIO

SDIO-SD卡 文章目录 SDIO-SD卡SD卡结构物理结构SD卡寄存器列表 SDIO总线SDIO总线拓扑SDIO总线SDIO总线协议常规数据传输宽位数据包 命令命令格式命令的类型命令集 SD卡的操作模式数据传输模式 STM32 的 SDIO 功能框图控制单元命令路径CPSM 状态机描述图数据路径数据 FIFO SDIO结…

SQL注入实战:二阶注入

一、二阶注入的原理 1、二阶注入也称为SOL二次注入。 2、二次注入漏洞是一种在Web应用程序中广泛存在的安全漏洞形式:相对于一次注入漏洞而言&#xff0c;二次注入漏洞更难以被发现&#xff0c;但是它却具有与一次注入攻击漏洞相同的攻击威力。 3、简单的说&#xff0c;二次…

3D应用开发工具HOOPS引领数字化工厂浪潮:制造业转型的关键角色!

随着科技的迅猛发展&#xff0c;制造业正经历着数字化转型的浪潮。在这一变革的前沿&#xff0c;Tech Soft 3D 的 HOOPS技术正扮演着关键的角色。 本文将深入研究HOOPS技术如何在数字化工作流程中发挥作用&#xff0c;以及它是如何引领制造业朝着更高效、智能的未来迈进的。 …

NeRF:神经辐射场复杂场景的新视图合成技术

NeRF&#xff1a;神经辐射场复杂场景的新视图合成技术 NeRF&#xff1a;神经辐射场复杂场景的新视图合成技术项目背景与意义如何运行&#xff1f;快速开始更多数据集 预训练模型方法与实现结语服务 NeRF&#xff1a;神经辐射场复杂场景的新视图合成技术 在计算机视觉领域&…

vue项目如何打包,java项目如何打包

目录 vue项目如何打包 java项目如何打jar包 使用Maven打包为JAR&#xff08;方式一&#xff09;视图&#xff1a; 先双击clean再双击package即可打包 使用Maven打包为JAR&#xff08;方式二&#xff09;命令&#xff1a; 1、确保你已经安装了Maven&#xff0c;并且配置了相应…

美赛提交流程与注意事项详细介绍

美赛提交流程 01 美赛选题步骤选题第一步&#xff1a;选题第二步&#xff1a;选题第三步: 02 论文提交邮箱登录提交论文发送邮箱查询进度 03 美赛提交注意事项04 题型分布/获奖技巧资料获取 内含获奖技巧、提交步骤等超多干货&#xff01; 01 美赛选题步骤 选题第一步&#xff…

kafka summary

最近整体梳理之前用到的一些东西&#xff0c;回顾Kafka的时候好多东西都忘记了&#xff0c;把一些自己记的比较模糊并且感觉有用的东西整理一遍并且记忆一遍&#xff0c;仅用于记录以备后续回顾 Kafka的哪些场景中使用了零拷贝 生产者发送消息&#xff1a;在 Kafka 生产者发送…

仅使用 Python 创建的 Web 应用程序(前端版本)第09章_购物车

在本章中,我们将实现购物车页面。 完成后的图像如下。 创建过程与之前相同,如下。 No分类内容1Model创建继承BaseDataModel的数据类Cart、CartItem2Service创建一个 CartAPIClient3Page定义PageId并创建继承自BasePage的页面类4Application将页面 ID 和页面类对添加到 Multi…

Spring Boot 中的外部化配置

Spring Boot 中的外部化配置 一、配置文件基础1.配置文件格式&#xff08;1&#xff09;YAML 基本语法规则&#xff08;2&#xff09;YAML 支持三种数据结构 2.application 文件3.application.properties 配置文件4.application.yml 配置文件5.Environment6.组织多文件7.多环境…

Soul CEO张璐积极履行反诈责任,倡导共建安全网络

近期,备受期待的反诈电影《鹦鹉杀》热映,深入剖析杀猪盘这一网络诈骗行为。为协助更多人增强反诈意识,备受欢迎的社交应用Soul App积极响应,在Soul CEO张璐的带领下,邀请电影中的演员和平台的反诈中心共同参与反诈宣传。此外,一旦用户在平台搜索“诈骗”、“杀猪盘”、“鹦鹉杀…

《WebKit 技术内幕》学习之十五(4):Web前端的未来

4 Cordova项目 Cordova是一个开源项目&#xff0c;能够提供将Web网页打包成本地应用格式的可运行文件。读者可能对Cordova项目陌生&#xff0c;但是大家可能对它的前身非常熟悉&#xff0c;那就是PhoneGap项目&#xff0c;它后来被Adobe公司收购。 图15-4描述了Cordova的主要工…

protobuf消息定义和使用注意事项

如果涉及到多端通讯&#xff0c;定义的protobuf消息格式可能不一样&#xff0c;会导致出现各种问题&#xff0c;比如名称或者消息的先后顺序&#xff0c;或者每个消息的id顺序不一致&#xff0c;都有可能导致解析不出来&#xff0c;我这里总结一下。 message消息名称可以不一致…

Ubuntu20.4 Mono C# gtk 编程习练笔记(四)

连续实时绘图 图看上去不是很清晰&#xff0c;KAZAM录屏AVI尺寸80MB&#xff0c; 转换成gif后10MB, 按CSDN对GIF要求&#xff0c;把它剪裁缩小压缩成了上面的GIF&#xff0c;图像质量大不如原屏AVI&#xff0c;但应该能说明原意&#xff1a;随机数据随时间绘制在 gtk 的 drawin…

Windows Server 安装 Docker

一、简介 Docker 不是一个通用容器工具&#xff0c;它依赖运行的 Linux 内核环境。Docker 实质上是在运行的 Linux 服务器上制造了一个隔离的文件环境&#xff0c;所以它执行的效率几乎等同于所部署的 Linux 主机服务器性能。因此&#xff0c;Docker 必须部署在 Linux 内核系统…