题目
给定一个仅包含 0
和 1
、大小为 rows x cols
的二维二进制矩阵,找出只包含 1
的最大矩形,并返回其面积。
示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]] 输出:6 解释:最大矩形如上图所示。
示例 2:
输入:matrix = [] 输出:0
示例 3:
输入:matrix = [["0"]] 输出:0
示例 4:
输入:matrix = [["1"]] 输出:1
示例 5:
输入:matrix = [["0","0"]] 输出:0
提示:
rows == matrix.length
cols == matrix[0].length
1 <= row, cols <= 200
matrix[i][j]
为'0'
或'1'
解答
源代码
class Solution {public int maximalRectangle(char[][] matrix) {int m = matrix.length, n = matrix[0].length;int[] heights = new int[n];int maxArea = 0;for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {if (matrix[i][j] == '1') {heights[j] += 1;} else {heights[j] = 0;}}maxArea = Math.max(maxArea, largestRectangleArea(heights));}return maxArea;}public int largestRectangleArea(int[] heights) {int[] left = new int[heights.length];int[] right = new int[heights.length];Deque<Integer> stack = new ArrayDeque<>();for (int i = 0; i < heights.length; i++) {while (!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {stack.pop();}left[i] = stack.isEmpty() ? -1 : stack.peek();stack.push(i);}stack.clear();for (int i = heights.length - 1; i >= 0; i--) {while(!stack.isEmpty() && heights[stack.peek()] >= heights[i]) {stack.pop();}right[i] = stack.isEmpty() ? heights.length : stack.peek();stack.push(i);}int maxArea = 0;for (int i = 0; i < heights.length; i++) {maxArea = Math.max(maxArea, (right[i] - left[i] - 1) * heights[i]);}return maxArea;}
}
总结
这题是建立在「84.柱形图中最大的矩形」上进行解答的,最第一行到最后一行,把当前行到最上面看作一个柱形图,计算出每列的高度,利用 「84.柱形图中最大的矩形」的函数进行计算,最终比较得到最大值。