【数据结构与算法篇】手撕八大排序算法之交换排序

在这里插入图片描述

​👻内容专栏: 《数据结构与算法篇》
🐨本文概括:常见交换排序包括冒泡排序与快速排序,本篇讲述冒泡排序与快速排序的思想及实现、复杂度分析。
🐼本文作者: 花 蝶
🐸发布时间:2023.8.27

一、冒泡排序

基本思想

冒泡排序(Bubble Sort)是一种简单的排序算法,其基本思想是通过两两交换相邻元素的位置,使得较大(或较小)的元素逐步“冒泡”到数组的一端(顶部或底部),重复“冒泡”的过程,直到序列没有要交换的元素为止,从而实现排序。

​算法步骤

1、 从数组的起始位置开始,依次比较相邻的两个元素。如果相邻元素的顺序错误(前者大于后者,或者前者小于后者,取决于是升序还是降序排序),则交换这两个元素的位置;
2、继续进行相邻元素的比较和交换,直到遍历到数组的末尾。这样一轮下来,最大(或最小)的元素就会“冒泡”到数组的一端。
3、重复上述步骤,但不再考虑已经排序好的末尾部分。每一轮操作都会将一个最大(或最小)的元素移到正确的位置。
4、 经过多轮的比较和交换,最终整个数组会变得有序。如果在某一轮没有进行任何交换操作时,说明数组已经有序,可以直接跳出循环。

动图演示

在这里插入图片描述

代码实现

//冒泡排序
//时间复杂度:O(N^2)
void BubbleSort(int* a, int n)
{//控制冒泡排序的趟数for(int i = 0; i < n - 1; i++){//假设数组有序int flag = 1;//控制每趟的过程for (int j = 0; j < n - 1 - i; j++){if (a[j] > a[j + 1]){Swap(&a[j], &a[j + 1]);flag = 0;}}//说明没有发生交换,数组已经有序,跳出循环即可if (flag == 1) break;}
}

冒泡排序的特性

冒泡排序的核心思想就是通过反复比较相邻元素并交换它们的位置,从而逐步将最大(或最小)的元素移动到合适的位置。尽管冒泡排序的时间复杂度较高(平均和最坏情况下都是 O(N^2),可以看作是一个等差数列的求和),但它的实现相对简单,适用于小规模的数据集,因此具有较强的教学意义,想必大家在刚开始学习编程时学的一个排序就是冒泡排序吧哈哈。

二、快速排序(递归版本)

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

//快排(递归版本)
void QuickSort(int* a, int begin, int end)
{if (begin >= end) return;int keyi = Partition(a, begin, end); //前序遍历//递归基准值左边的区间QuickSort(a, begin, keyi - 1);//递归基准值右边的区间QuickSort(a, keyi + 1, end);
}

上述为快速排序递归实现的主框架,发现与二叉树前序遍历规则非常像,大家在写递归框架时可想想二叉树前序遍历规则即可快速写出来,后续只需分析如何按照基准值来对区间中数据进行划分的方式即可。
下面用三个版本实现:hoare版本、挖坑法、前后指针法

1.hoare版本

1、选择基准元素key,通常是数组中的第一个元素。
2、使用两个指针LR,一个指向数组的开头(较小值的区域),一个指向数组的末尾(较大值的区域)。
3、交换的目标是L找到比基准大的元素,R找到比基准小的元素。不断交换指针所指的元素,直到两个指针相遇。
4、当两个指针相遇时,交换基准元素与当前相遇位置的元素,此时数组被划分为左右两个子数组。
5、对左右两个子数组递归地应用相同的分区步骤,直到所有子数组都有序

算法分析

👇①:原始序列
在这里插入图片描述
👇②:right向前移动,找比key小的位置,left往后移动找比key大的位置,然后交换。
在这里插入图片描述
👇③:继续往后寻找,直到两个指针相遇。
在这里插入图片描述
👇④:交换基准元素与当前相遇位置的元素。
在这里插入图片描述
👇⑤:这样子我们发现基准值左边的区间里面的元素都比基准值小,右边的区间里面的元素都比基准值大。我们可以按照前序遍历的思想对左边区间进行递归操作,右边区间也进行递归操作。

代码实现

//hoare版本
int Partition1(int* a, int left, int right)
{int keyi = left;while (left < right){//注意: 要加上left < right 否则会出现越界//若不判断等于基准值,也会出现死循环的情况//右边找小while (left < right && a[right] >= a[keyi]){right--;}//左边找大while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}//快排(递归版本)
void QuickSort(int* a, int begin, int end)
{//当区间不存在或者只剩一个元素,就回溯if (begin >= end) return;int keyi = Partition1(a, begin, end);//前序遍历//递归基准值左边的区间QuickSort(a, begin, keyi - 1);//递归基准值右边的区间QuickSort(a, keyi + 1, end);
}

2.挖坑法

挖坑法的基本思想是:

  • 1、首先,选择一个基准元素(通常是数组中的第一个元素)作为“坑”(hole)。前提需要将这个基准元素用一个临时变量key存起来。
  • 2、将基准元素挖出,形成一个空位(坑)。
  • 3、从数组的另一端开始,从右向左遍历,找到一个比基准元素小的元素,然后将这个元素填入之前的坑中。
  • 4、继续从左向右遍历,找到一个比基准元素大的元素,然后将这个元素填入上一步的坑中。
  • 5、重复执行步骤 3 和步骤 4,直到左右指针相遇。
  • 6、此时,基准元素的位置就是这个相遇的位置,将基准元素填入这个坑中。

算法分析

👇①:原始序列
在这里插入图片描述
👇②:将基准值存放到临时变量key中,形成一个坑位。
在这里插入图片描述
👇③:从右向左遍历,R找到比基准值小的元素,将这个元素填入到之前的坑中,此时当前位置就形成了新坑。
在这里插入图片描述
👇④:紧接着,从左往右遍历,L寻找比基准值大的元素,将这个元素填入到上一步的坑中,此时当前位置形成了新坑。
在这里插入图片描述
👇⑤:重复以上步骤后,直到左右指针相遇,最后会形成一个坑,将临时变量放入坑中。
在这里插入图片描述
👇⑥:这样子我们发现基准值左边的区间里面的元素都比基准值小,右边的区间里面的元素都比基准值大。我们可以按照前序遍历的思想对左边区间进行递归操作,右边区间也进行递归操作。

代码实现

//挖坑法
int Partition2(int* a, int left, int right)
{int key = a[left];//挖坑int hole = left;while (left < right){//右边找小while (left < right && a[right] >= key){right--;}a[hole] = a[right];hole = right;//左边找大while (left < right && a[left] <= key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}
//快排(递归版本)
void QuickSort(int* a, int begin, int end)
{//当区间不存在或者只剩一个元素,就回溯if (begin >= end) return;int keyi = Partition2(a, begin, end);//前序遍历//递归基准值左边的区间QuickSort(a, begin, keyi - 1);//递归基准值右边的区间QuickSort(a, keyi + 1, end);
}

3.前后指针法

基本思想:在快速排序的划分过程中,使用前后指针法来确定基准元素的位置,最后将数组划分成两部分,一部分小于基准元素,另一部分大于基准元素。

  • 1、首先,选择一个基准元素key(通常是数组中的第一个元素)。
  • 2、使用两个指针,prev指向数组的开头,cur指向prev的后一个位置。
  • 3、判断cur指向的数据是否小于key。若小于,则prev后移一位,cur指向的内容与prev指向的内容交换,然后cur++
  • 4、若cur指向的数据大于key,则cur++
  • 重复步骤3和步骤4,直到cur指针走完(最后一个元素的下一个位置)
  • 最后,将keyprev指向的元素交换。

动图演示

在这里插入图片描述

//前后指针法
int Partition3(int* a, int left, int right)
{int prev = left;int cur = prev + 1;int keyi = left;//cur小于key,交换++prev与cur的位置//将大的位置翻滚时往后挪动,小的位置移动前面while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[cur], &a[prev]);}cur++;}//将key与prev指向的元素交换。Swap(&a[prev], &a[keyi]);return prev;
}//快排(递归版本)
void QuickSort(int* a, int begin, int end)
{//当区间不存在或者只剩一个元素,就回溯if (begin >= end) return;int keyi = Partition3(a, begin, end);//前序遍历//递归基准值左边的区间QuickSort(a, begin, keyi - 1);//递归基准值右边的区间QuickSort(a, keyi + 1, end);
}

快速排序(递归版本)的特性

时间复杂度

选择基准元素影响时间复杂度:若基准元素key偏向于所有元素中的中位数,则时间复杂度处于较好的情况,若基准元素key是所有元素中最小的,或者接近最小值,那么时间复杂度就处于较坏的情况。

  • 平均情况下的时间复杂度: 在平均情况下,快速排序的时间复杂度为 O(n log n)。这是因为在每次分区过程中,数组会被划分成大致相等的两部分。在每次递归中,都会将问题的规模减半,递归的展开图可以看作是一颗满二叉树,所以递归的深度为 O(log n),每层递归的分区操作都需要 O(n) 的时间,因此总的时间复杂度为 O(n*log n)
  • 最坏情况下的时间复杂度: 在最坏情况下,快速排序的时间复杂度为 O(n^2)。这种情况发生在每次划分后,一个子数组为空,另一个子数组包含所有的元素。这样会导致递归树变得很不平衡,每次递归的问题规模只减少一个元素。虽然快速排序通常能够避免这种情况,但在某些情况下(例如已经有序的数组),最坏情况可能出现。

在这里插入图片描述

解决方案

  • 随机数选择基准元素: 在每次划分时,随机选择一个基准元素,这可以减少最坏情况的发生概率。
  • 三数取中法: 在选择基准元素时,不仅考虑第一个和最后一个元素,还考虑数组中间位置的元素,选择其中值大小居中的元素作为基准。

👇这里提供一种三数取中的方法,以hoare版本为例:

//三数取中,返回下标
int GetMidIndex(int* a, int left, int right)
{int mid = (left + right) >> 1;if (a[left] < a[mid]){if (a[mid] < a[right]) return mid;else if (a[left] > a[right]) return left;else return mid;}else //a[left] > a[mid]{if (a[mid] > a[right]) return mid;else if (a[right] > a[left]) return left;else return right;}
}
//hoare版本
int Partition1(int* a, int left, int right)
{//将中位数与数组的第一个元素(基准值)进行交换int midi = GetMidIndex(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;while (left < right){//右边找小while (left < right && a[right] >= a[keyi]){right--;}//左边找大while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}

后面会更新快排的非递归版本……可到数据结构专栏查看🥰
更多数据结构与算法系列文章👉😉==> 【传送门】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/64959.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Darshan日志分析

标头 darshan-parser 输出的开头显示了有关作业的总体信息的摘要。还可以使用–perf、–file或–total命令行选项生成其他作业级别摘要信息。 darshan log version&#xff1a;Darshan 日志文件的内部版本号。compression method&#xff1a;压缩方法。exe&#xff1a;生成日志…

skywalking agent监控java服务

一、前言 skywalking agent可以监控的服务类型有多种&#xff0c;python、go、java、nodejs服务等都可以监控&#xff0c;现在通过java服务来演示skywalking agent的使用&#xff0c;并且是使用容器的方式实现 二、部署skywalking agent监控 需要注意&#xff0c;skywalking…

Django报错:SystemCheckError: System check identified some issues解决办法

今天练习django自定义标签时&#xff0c;一开始在APPbook中写了自定义标签book_tags.py 测试成功&#xff0c;之后新建了一个APPblogs&#xff0c;测试在blogs中创建模板使用自定义标签&#xff0c;于是直接把book/templatetags包直接赋值到blogs目录里。在页面里加载自定义标…

K8s简介之什么是K8s

目录 1.概述 2.什么是容器引擎&#xff1f; 3.什么是容器 4.什么是容器编排&#xff1f; 5.容器编排工具 6.到底什么是K8s? 7.为什么市场推荐K8s 8.K8s架构 9.K8s组件 Pods API 服务器 调度器 控制器管理器 Etcd 节点 Kubelet Kube代理 Kubectl 1.概述 Kub…

通过这 5 项 ChatGPT 创新增强您的见解

为什么绝大多数的人还不会使用chatGPT来提高工作效能&#xff1f;根本原因就在还不会循序渐进的发问与chatGPT互动。本文总结了5个独特的chatGPT提示&#xff0c;可以帮助您更好地与Chat GPT进行交流&#xff0c;以获得更清晰的信息、额外的信息和见解。 澄清假设和限制 用5种提…

vcruntime140_1.dll丢失的三个修复方法,【vcruntime140_1修复工具下载】

大家好&#xff01;今天&#xff0c;我将为大家介绍一个关于计算机vcruntime140_1.dll丢失的问题。在我们的日常生活和学习中&#xff0c;计算机出现问题是常有的事情。有时候&#xff0c;我们可能会遇到一些令人头疼的问题&#xff0c;比如vcruntime140_1.dll丢失。那么&#…

C盘清理 “ProgramData\Microsoft\Search“ 文件夹过大

修改索引存放位置 进入控制面板->查找方式改成大图标&#xff0c; 选择索引选项 进入高级 填写新的索引位置 删除C盘索引信息 删除C:\ProgramData\Microsoft\Search\Data\Applications 下面的文件夹 如果报索引正在使用&#xff0c;参照第一步替换索引位置。关闭索引

stable diffusion实践操作-hypernetworks

系列文章目录 本文专门开一节写hypernetworks的内容&#xff0c;在看之前&#xff0c;可以同步关注&#xff1a; stable diffusion实践操作 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、h…

conda创建python虚拟环境

1.查看当前存在那些虚拟环境 conda env list conda info -e 2.conda安装虚拟环境 conda create -n my_env_name python3.6 2.1在anaconda下改变python版本 当前3.7 安装3.7 conda create -n py37 python3.7 conda activate py37 conda create -n py37 python3.7conda a…

IDM2024Internet Download Manager下载器最新版本

IDM&#xff08;Internet Download Manager&#xff09;下载器主窗口的左侧是下载类别的分类&#xff0c;提供了分类功能来组织和管理文件。如果不需要它&#xff0c;可以删除“分类”窗口&#xff0c;并且在下载文件时不选择任何分类。 每个下载类别都有一个名称&#xff0c;…

路由器的简单概述(详细理解+实例精讲)

系列文章目录 华为数通学习&#xff08;4&#xff09; 目录 系列文章目录 华为数通学习&#xff08;4&#xff09; 前言 一&#xff0c;网段间通信 二&#xff0c;路由器的基本特点 三&#xff0c;路由信息介绍 四&#xff0c;路由表 五&#xff0c;路由表的来源有哪些…

linux安装docker全过程

3. 第二步&#xff1a;设置docker的存储库。就两条命令&#xff0c;我们直接执行就好。 ​ sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo ​​ 4. 安装docker engine和docker-compose。 执行命…

IP地址、网关、网络/主机号、子网掩码关系

一、IP地址 IP地址组成 IP地址分为两个部分&#xff1a;网络号和主机号 &#xff08;1&#xff09;网络号:标识网段&#xff0c;保证相互连接的两个网段具有不同的标识。 &#xff08;2&#xff09;主机号:标识主机&#xff0c;同一网段内&#xff0c;主机之间具有相同的网…

某人事系统架构搭建设计记录

首发博客地址 https://blog.zysicyj.top/ 先大致列一下基础情况 架构必须是微服务 场景上涉及大量查询操作&#xff0c;分析操作 存在临时大量写入的场景 并发并不高 对高可用要求较高&#xff0c;不能挂掉 对安全要求高 要能过等保测试等三方测试 使用人数并不多&#xff0c;十…

OA项目之会议通知(查询是否参会反馈详情)

目录 会议查询 是否参会 反馈详情 讲解思路 会议通知SQL语句分析 反馈详情SQL语句分析 后台代码编写 前端代码编写 效果预览 会议查询 MeetingFeedBack.java package com.zking.oa.model;import org.lisen.mvc.util.AutoIncrement; import org.lisen.mvc.util.…

五金轴尺寸机器视觉测量软硬件方案--康耐德智能

检测内容&#xff1a; 五金轴尺寸机器视觉测量 检测要求&#xff1a; 精度0.015mm&#xff0c;速度180~240个/分钟 视觉可行性分析&#xff1a; 对样品进行了光学实验&#xff0c;并进行图像处理&#xff0c;原则上可以使用机器视觉系统进行测试测量。 结果&#xff1a; 对…

解决uniapp手机真机调试时找不到手机问题

1、检查 USB 调试是否开启 2、检查是否有选择 文件 传输 选项 3、如果上述都做了还找不到&#xff0c;可以看看开发者选项中的【USB设置】&#xff0c;把模式改为 MIDI 模式

黑马 大事件项目 笔记

学习视频&#xff1a;黑马 Vue23 课程 后台数据管理系统 - 项目架构设计 在线演示&#xff1a;https://fe-bigevent-web.itheima.net/login 接口文档: https://apifox.com/apidoc/shared-26c67aee-0233-4d23-aab7-08448fdf95ff/api-93850835 接口根路径&#xff1a; http:/…

mysql与msql2数据驱动

mysql基本使用 数据库操作&#xff08;DDL&#xff09; -- 数据考操作 -- 1.查询所有数据库 SHOW DATABASES;-- 2.选择数据库 USE learn_mysql;-- 3.当前正在使用的数据库 SELECT DATABASE();-- 4.创建数据库 CREATE DATABASE IF NOT EXISTS learn_mysql;-- 5.删除数据库 DRO…

UDP/TCP协议报头详细分析

文章目录 ————————预备知识————————数据段netstatpidof—————UDP协议报头即相关概念分析—————UDP协议端格式UDP 特点全双工send / rec 函数的本质UDP的缓冲区基于UDP的应用层协议—————TCP协议报头即相关概念分析—————TCP格式及解析32位序号…