1、TensorBoard的使用
(1)显示坐标:
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Imagewriter = SummaryWriter("logs") # 写入的位置 log_dir = 'logs
# writer.add_image()
"""y = x"""
for i in range(100):writer.add_scalar("y=x", i, i)writer.close()
运行:
浏览器运行结果:
# 运行
>tensorboard --logdir=logs #会打开http://localhost:6006/>tensorboard --logdir=logs --port=6007 (#增加端口设置)
(2)显示图片:
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Imagewriter = SummaryWriter("logs") # 写入的位置 log_dir = 'logs"""
参数:def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"):其中:img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data
"""
image_path = "./hymenoptera_data/train/ants/0013035.jpg"
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape) # (512, 768, 3) H高度,W宽度,C通道数writer.add_image("test", img_array, 5, dataformats="HWC") # 从PIL到numpy,需要在add_image()中指定shape中每一个数字/维表示的含义。"""y = x参数:def add_scalar(self, tag, # 标签scalar_value, # y轴global_step=None, # x轴walltime=None,new_style=False,double_precision=False,):
"""
for i in range(100):writer.add_scalar("y=2x", 3*i, i)writer.close()
结果展示:
2、Transform的使用
(1)transforms该如何使用(python)
from PIL import Image
from torchvision import transforms# python的用法 ==>tensor
"""
通过 transforms.ToTensors去解决两个问题:1、transforms该如何使用(python)2、为什么我们需要Tensor数据类型
"""img_path = "./dataset/Snipaste_01.jpg"
img = Image.open(img_path)
print(img)# 1、transforms该如何使用(python)
tensor_trans = transforms.ToTensor
tensor_img = tensor_trans().__call__(img) # 将img转换成 tensor_img的图片print(tensor_img)
运行结果:
(2)为什么我们需要Tensor数据类型 (在之后的神经网络会用到,前向传播、反向传播等)
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms# python的用法 ==>tensor
"""
通过 transforms.ToTensors去解决两个问题:1、transforms该如何使用(python)2、为什么我们需要Tensor数据类型
"""img_path = "./dataset/Snipaste_01.jpg"
img = Image.open(img_path)
print(img)# 1、transforms该如何使用(python)
tensor_trans = transforms.ToTensor
tensor_img = tensor_trans().__call__(img) # 将img转换成 tensor_img的图片
print(tensor_img)writer = SummaryWriter("logs_")
writer.add_image("Tensor_img", tensor_img)
writer.close()
运行结果截图:
3、常见的Transforms
(1)#ToTensor()
(2)# Normalize()
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
img_path = "./dataset/Snipaste_01.jpg"
img = Image.open(img_path)
print(img)writer = SummaryWriter("logs__")# ToTensor()
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)# Normalize
"""
output[channel] = (input[channel] - mean[channel]) / std[channel]
"""
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([6,3,5],[3,2,1])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm)writer.close()
Noumalize() 和ToTensor()运行结果:
(3)#Resize()
(4)#Compose()
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
img_path = "./dataset/Snipaste_01.jpg"
img = Image.open(img_path)
print(img)writer = SummaryWriter("logs__")# ToTensor()
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)# Normalize
"""
output[channel] = (input[channel] - mean[channel]) / std[channel]
"""
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([6,3,5],[3,2,1])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm)# Resize()
print(img.size)
trans_resize = transforms.Resize((512, 512))
# img PIL -> resize ->img_resize PIL
img_resize = trans_resize(img)
print(img_resize)
# img_resize PIL -> totensor -> img_resize tensor
img_resize = trans_totensor(img_resize)
writer.add_image("Resize", img_resize)#Compose --resize -2
trans_resize_2 = transforms.Resize(512)
trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize_compose", img_resize_2, 1)writer.close()
4、总结:
①关注输入和输出类型。
②多看官方文档。
③关注方法需要哪些参数
④查看数据类型 type( xxx)