深度学习(6)---Transformer

文章目录

  • 一、介绍
  • 二、架构
    • 2.1 Multi-head Attention
    • 2.2 Encoder(编码器)
    • 2.3 Decoder(解码器)
  • 三、Encoder和Decoder之间的传递
  • 四、Training
  • 五、其他介绍
    • 5.1 Copy Mechanism
    • 5.2 Beam Search


一、介绍

 1. Transformer是一个Seq2Seq(Sequence-to-Sequence)的模型,这意味着它能够处理从输入序列到输出序列的问题。在Seq2Seq模型中,输入是一段序列,输出也是一段序列,输出序列的长度通常由模型自身决定。这种模型在自然语言处理(NLP)领域有广泛的应用,例如语音识别、机器翻译、语音合成、聊天机器人训练等。

在这里插入图片描述

 2. Transformer作为Seq2Seq模型的一种实现,采用了自注意力机制(self-attention)和位置编码(position encoding)等技术,使其在处理长序列时具有更好的性能。相比传统的Seq2Seq模型,Transformer的编码器和解码器部分内部不再使用RNN网络,而是采用了自注意力机制,这使得模型在处理序列数据时更加高效。Transformer的整体模型架构如下图所示:

在这里插入图片描述

二、架构

2.1 Multi-head Attention

 1. 在Transformer中,通过添加一种多头注意力机制,可进一步完善自注意力层。具体做法:首先,通过 h h h 个不同的线性变换对 Query、Key 和 Value 进行映射;然后,将不同的 Attention 拼接起来;最后,再进行一次线性变换。基本结构如下图所示:

在这里插入图片描述

 2. 在多头注意力下,我们为每组注意力单独维护不同的 Query、Key 和 Value 权重矩阵,从而得到不同的 Query、Key 和 Value 矩阵。

在这里插入图片描述

 3. 按照上面的方法,比如使用不同的权重矩阵进行 8 次自注意力计算,就可以得到 8 个不同的 Z Z Z 矩阵。
 因为前馈神经网络层接收的是 1 个矩阵(每个词的词向量),而不是上面的 8 个矩阵。因此,我们需要一种方法将这 8 个矩阵整合为一个矩阵。具体方法如下:

  • (1) 把 8 个矩阵拼接起来。
  • (2) 把拼接后的矩阵和一个权重矩阵 W O W^O WO 相乘。
  • (3) 得到最终的矩阵 Z Z Z,这个矩阵包含了所有注意力头的信息。这个矩阵会输入到前馈神经网络层。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

 4. 总结:多头注意力机制通过并行化处理多个注意力头来提高效率。每个注意力头都可以独立计算注意力权重,衡量输入信息中不同部分的关联程度。这样,模型可以从多个不同的角度和层次上关注输入数据,捕捉到更多的语义信息。
 多头注意力机制的优势在于其能够更好地理解句子的句法和语义结构信息,并提高模型从不同位置学习特征信息的能力。

2.2 Encoder(编码器)

 1. 在人工智能中,Encoder通常指的是神经网络中的一个部分,用于将输入数据转换成一种适合解码器网络处理的形式。
 在序列到序列(Seq2Seq)模型中,Encoder用于将输入序列转换为一种固定维度的向量表示,这种向量表示可以作为后续处理和生成任务的基础。例如,在机器翻译任务中,Encoder可以将输入的源语言句子转换为一种固定维度的向量表示,然后这个向量可以作为Decoder的输入,以生成目标语言的翻译结果。

注解:常见的编码方法包括独热编码(One-Hot Encoding)和标签编码(Label Encoding)等。独热编码是一种将类别特征转换为二进制向量表示的方法,其中每个向量只有一个元素为1,其余元素为0。这种方法适用于类别特征数量较小的情况。标签编码则是一种将类别特征转换为整数表示的方法,其中每个整数代表一个特定的类别。这种方法适用于类别特征数量较大的情况。

 2. Transformer中的Encoder如下图所示:

在这里插入图片描述

在这里插入图片描述

 3. Encoder的一个Block如下图所示,在自注意力和FC上加了Residual,并且使用了Layer norm。

在这里插入图片描述

在这里插入图片描述

注解
(1)FC层指的是全连接层(Fully Connected Layer),也被称为密集层或线性层。全连接层是一种常见的神经网络层,其每个神经元都与前一层的所有神经元相连,因此被称为全连接。全连接层通常位于神经网络的最后几层,用于将学习到的特征组合起来生成最终的输出结果。
(2)Batch Norm,即批规范化,是深度学习中常用的一种技术,主要用于解决每批数据训练时的不规则分布给训练造成的困难。具体地说,Batch Norm会对神经网络的某一层的batch输出进行归一化,即先进行z-score归一化,然后进行线性变换,最后再输入到激励函数中。这样做可以使得网络的训练更快、更稳定。同时,Batch Norm也是一种正则化的方式,可以代替其他正则化方式如dropout,但也可能消融数据之间的许多差异信息。因此,并不能说Batch Norm一定适用于任何任务。
(3)Layer Norm是一种神经网络中的归一化技术,它对每一个样本内的所有值进行标准化处理。LayerNorm的具体过程是将每一个样本的所有特征值进行均值和方差的归一化,使数据落在均值为0,方差为1的分布中。与Batch Normalization(BatchNorm)不同,LayerNorm是在每个样本的维度上进行归一化,而不是在每个batch的维度上进行归一化。因此,LayerNorm可以更好地处理不同大小和长度的序列数据,尤其在自然语言处理和循环神经网络等任务中表现优异。

2.3 Decoder(解码器)

 1. 编码器的作用是将信息转换为一种适合传输、存储或处理的形式,而解码器则将其还原为原始形式。
 在机器学习和深度学习的上下文中,Decoder通常指的是一个神经网络模型的一部分,用于将编码后的数据或特征映射回原始空间。例如,在自编码器(Autoencoder)中,Decoder部分负责将压缩编码的向量解码成与输入数据相似的输出数据。
 除了自编码器,Decoder还可以应用于其他任务,如生成对抗网络(GAN)中的生成器、序列到序列(Sequence-to-Sequence)模型中的解码器等。在这些任务中,Decoder通常负责将输入数据转换为目标形式的输出数据,例如从编码的向量生成图像、文本或语音等。

 2. 我们以机器翻译为例,Decoder接收来自Encoder的一组向量。
 (1) 先给Decoder一个特殊的符号,代表begin,在Decoder产生的文本里产生一个开始的符号。
 (2) 接下来Decoder会产生一个向量,向量长度和对应语言词汇库的长度一样,就是希望识别的词汇库的总词汇数。
 (3) 在得到该向量前做一个 s o f t m a x softmax softmax 分类,给每个字一个分数,选择最大的。把新得到的输出“机”表示为一个向量,作为Decoder新的输入,不断进行下去。
注意:每个输出向量,都结合了在它之前的输入(或说输出)向量,比如”学“的输出是学习了输入的begin、“机”、“器”。 且由于后面的输出与前面的输出有关联,所以可能会出现一步错步步错的情况。

在这里插入图片描述

在这里插入图片描述

 3. Transformer中的Decoder如下图所示:

在这里插入图片描述

在这里插入图片描述

 4. Encoder与Decoder比较,主要在于Decoder多了Masked部分。

在这里插入图片描述

 5. 在Self-attention中,一个输出要考虑所有的输入。而Masked部分就是从每个输出都考虑所有输出变为只考虑前面的输入。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

 6. 另外的关键点:Decoder必须自己决定输出的长度。所以在输出想要的结果后,需要输出一个“断”的符号,即表示结束,才能没有后续的输出。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、Encoder和Decoder之间的传递

 1. Encoder和Decoder之间传递资讯需要靠下面图中红框的部分。在Cross attention部分中,两个输入来自Encoder,一个输入来自Decoder。

在这里插入图片描述

 2. Decoder产生一个 q q q 会和Encoder的输出 a a a 做注意力机制的运算,结果进入FC。

在这里插入图片描述

在这里插入图片描述

四、Training

 1. 前面讲述的所有内容都是在模型已经训练好的基础上进行的。那在训练模型时,以机器翻译为例,我们会给一段语音和真实的对应标签。那每一个的输出的结果我们都希望最接近真实的标签,每产生一个字就是从几千个字中进行的分类问题。训练时希望所有的字(含END)的交叉熵最少。
注意:在训练时我们会给Decoder正确答案。

在这里插入图片描述

 2. Teach Forcing是一种训练技术,在Transformer模型中用于提高训练效率和收敛速度。Teach Forcing允许模型在一次输入全部目标序列,以并行的方式一次输出完整的目标序列,从而大大提高了训练效率。
 Teach Forcing的主要思想是,在训练过程中,我们强制模型使用正确的单词作为目标序列的输入,而不是使用模型自身的预测结果。这样可以避免因中间预测错误而对后续序列的预测产生影响,从而加快训练速度。
 在Transformer模型中,Teach Forcing的实现方式是将正确的单词序列和对应输出传递到Decoder模块。在每个时间步,我们使用上一时刻的正确单词作为输入,而不是使用模型自身的预测结果。这样,每个时刻的输入不再依赖上一时刻的输出,而是依赖真实的目标序列。

在这里插入图片描述

五、其他介绍

5.1 Copy Mechanism

 1. 其实有时候我们在一些对话中(如聊天机器人)只需要复制一些信息。在Transformer中有这种技术,叫Copy Mechanism。

在这里插入图片描述

 2. Copy Mechanism是一种在文本生成领域中使用的技术,其目的是在生成输出时复制或指向输入序列的元素。这种机制最早由Vinyals等人于2015年在Pointer Network中提出,有时也被称为Pointer Mechanism。
 Copy Mechanism的设计初衷是为了解决传统seq2seq模型输出序列词汇表无法随着输入序列长度改变而改变的问题。Pointer Network将attention机制中针对输入序列的权重用作指向输入序列的指针,因此其输出为权重最大的位置的输入序列元素,实现直接操作输入序列元素作为输出,而不需要设定输出序列词汇表。
 在对话任务中,Copy Mechanism被用来复制对话上下文和响应之间的单词,这有助于提升模型的性能。因为对话中经常会有重复的短语或专有名词等低频词,这些词靠标准RNN很难生成。
 总之,Copy Mechanism的本质是提取(extract)关键词,这个输出可以作为上游模块,和其它任务相结合。

在这里插入图片描述

5.2 Beam Search

 1. 在Transformer模型中,Beam Search是一种启发式搜索算法,用于生成最可能的输出序列。Beam Search的核心思想是使用宽度为 k k k 的搜索来找到最可能的输出序列。在每个时间步,算法将保留 k k k 个最可能的输出,并根据这些输出生成下一个时间步的候选输出。
 具体来说,Beam Search从初始状态开始,对于每个时间步,它将计算当前状态下的所有可能输出的概率。然后,它选择概率最高的 k k k个输出作为候选输出。对于每个候选输出,算法将其与下一个时间步的候选输出相乘,并选择概率最高的 k k k 个输出作为下一个时间步的候选输出。这个过程一直持续到达到最大长度或满足终止条件为止。
 Beam Search的一个关键参数是宽度 k k k,它决定了搜索的宽度。较大的 k k k 值将导致更宽的搜索,从而增加输出的多样性,但也可能导致更多的计算成本。较小的k值将导致更窄的搜索,但可能忽略一些好的候选输出。

在这里插入图片描述

 2. 在Decoder中提到,每个输出都是分数最大的,但有时找出分数最高的不一定就是最好的,这取决于任务的特性。当目标非常明确时,Beam Search性能好,如语音辨识;当需要一点创造力、结果有多种可能时,需要在Decoder中加入随机性。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/647363.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mapstruct自定义转换,怎样将String转化为List

源码&#xff1a;https://gitee.com/cao_wen_bin/test 最近在公司遇到了这样一个为题&#xff0c;前端传过来的是一个List<Manager>,往数据库中保存到时候是String&#xff0c;这个String使用谷歌的json转化器。 当查询的时候在将这个数据库中String的数据以List<Mana…

Mysql索引相关学习笔记:B+ Tree、索引分类、索引优化、索引失效场景及其他常见面试题

前言 索引是Mysql中常用到的一个功能&#xff0c;可以大大加快查询速度&#xff0c;同时面试中也是经常碰到。本文是学习Mysql索引的归纳总结。 索引采用的数据结构——B 树 本部分主要是参考自小林Coding B树的由来 二分查找可以每次缩减一半&#xff0c;从而提高查找效率…

对话框与多窗体设计 —— 标准对话框

三、对话框与多窗体设计3.1 标准对话框3.1.1 QFileDialog对话框3.1.2 QColorDialog对话框3.1.3 QFontDialog对话框3.1.4 QInputDialog标准输入对话框3.1.5 QMessageBox消息对话框 三、对话框与多窗体设计 一个完整的应用程序设计中&#xff0c;不可避免地会涉及多个窗 体、对框…

vue---打印本地当前时间Demo

<template><view class"content" tap"getCurrentTime()">打印时间</view> </template><script>export default {data() {return {title: Hello}},onLoad() {},methods: {getCurrentTime() {//获取当前时间并打印var _this …

springboot127基于Springboot技术的实验室管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

Elasticsearch内核解析 - 数据模型篇

Elasticsearch内核解析 - 数据模型篇 - 知乎 Elasticsearch是一个实时的分布式搜索和分析引擎&#xff0c;它可以帮助我们用很快的速度去处理大规模数据&#xff0c;可以用于全文检索、结构化检索、推荐、分析以及统计聚合等多种场景。 Elasticsearch是一个建立在全文搜索引擎…

蓝牙 | 软件: Qualcomm BT Audio 问题分析(1)----ACAT Tools安装

大家好&#xff01; 我是“声波电波还看今朝”成员的一位FAE Devin.wen&#xff0c;欢迎大家关注我们的账号。 今天给大家大概讲解“如何排查Qualcomm BT Audio”的疑难杂症&#xff08;一&#xff09;如何安装ACAT Tools。 大家在遇到Audio方面的问题&#xff0c;比如 无声、…

[蓝桥杯]真题讲解:飞机降落(DFS枚举)

[蓝桥杯]真题讲解&#xff1a;飞机降落&#xff08;DFS枚举&#xff09; 一、视频讲解二、暴力代码&#xff08;也是正解代码&#xff09; 一、视频讲解 视频讲解 二、暴力代码&#xff08;也是正解代码&#xff09; //飞机降落&#xff1a; 暴力枚举DFS #include<bits/…

【python】自动微分的一个例子

一、例子 import torchx torch.arange(4.0) x.requires_grad_(True) y 2 * torch.dot(x, x) print(y) y.backward() x.grad 4 * x print(x.grad) 二、解读 1. import torch 这一行导入了PyTorch库。PyTorch是一个开源的机器学习库&#xff0c;广泛用于计算机视觉和自然语…

DAY10_SpringBoot—SpringMVC重定向和转发RestFul风格JSON格式SSM框架整合

目录 1 SpringMVC1.1 重定向和转发1.1.1 转发1.1.2 重定向1.1.3 转发练习1.1.4 重定向练习1.1.5 重定向/转发特点1.1.6 重定向/转发意义 1.2 RestFul风格1.2.1 RestFul入门案例1.2.2 简化业务调用 1.3 JSON1.3.1 JSON介绍1.3.2 JSON格式1.3.2.1 Object格式1.3.2.2 Array格式1.3…

一站式VR全景婚礼的优势表现在哪里?

你是否想过&#xff0c;婚礼也可以用一种全新的方式呈现&#xff0c;VR全景婚礼让每位用户沉浸式体验婚礼现场感。现在很多年轻人&#xff0c;都想让自己的婚礼与众不同&#xff0c;而VR全景婚礼也是未来发展的方向之一。 很多婚庆公司开通了VR婚礼这一服务&#xff0c;就是通过…

YOLOv5改进系列(28)——添加DSConv注意力卷积(ICCV 2023|用于管状结构分割的动态蛇形卷积)

【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制

mysql生成最近24小时整点最近30天最近12个月时间临时表

文章目录 生成最近24小时整点生成最近30天生成最近12个月 在统计的时候需要按时间来展示&#xff0c;但是数据的时间不一定是连续的&#xff0c;那就需要在代码里面生成连续的时间&#xff0c;然后按时间匹配到对应的数据&#xff0c;这样比较麻烦&#xff0c;可以在sql中使用连…

统计学-R语言-6.3

文章目录 前言总体方差的区间估计总体方差的区间估计(一个总体方差的估计)总体方差的区间估计(两个总体方差比的估计) 总结 前言 本篇文章是最后一个介绍参数估计的章节。 总体方差的区间估计 研究一个总体时&#xff0c;推断总体方差 使用的统计量为样本方差 。研究两个总体…

antdesignvue中使用VNode写法

1、使用场景 如图&#xff1a;消息提示框中&#xff0c;将数据中的数据单独一行显示 2、代码 let errorList res.result; //后端返回的数据例&#xff1a; ["1. 数据格式不正确","2. 数据已存在"]if(errorList&&errorList.length!0){this.$notif…

SpringCloud Bus动态刷新全局广播

文章目录 代码地址配置项目配置修改测试 SpringCloud Bus动态刷新定点通知 代码地址 地址:https://github.com/13thm/study_springcloud/tree/main/days11_%20Bus 配置项目 必须先具备良好的RabbitMQ环境先 演示广播效果&#xff0c;增加复杂度&#xff0c;再以3355为模板再…

node多版本管理工具nvm安装

开发前端项目&#xff0c;有时候新老项目交替&#xff0c;不同项目需要不同的node.js&#xff0c;本机电脑需要安装多个版本的nodejs&#xff0c;手动切换十分麻烦&#xff0c;有了nvm就可以轻松解决这个问题&#xff0c;nvm全名node.js version management 它是一个nodejs的版…

软考复习之UML设计篇

UML统一建模语言 构件图&#xff1a;描述系统的物理结构&#xff0c;它可以用来显示程序代码如何分解成模块 部署图&#xff1a;描述系统中硬件和软件的物理结构&#xff0c;它描述构成系统架构的软件构件&#xff0c;处理器和设备 用例图&#xff1a;描述系统与外部系统及用…

python使用回溯算法解决括号组合问题

对于给定k为括号的总对数&#xff0c;需要将能够组合的所有有效括号组合方式求出的问题。 对于回溯算法是将解空间看做一定的结构&#xff0c;通常是作为树形结构或者图形结构&#xff0c;回溯算法实际上是一种类似枚举的探索尝试过程&#xff0c;主要是在探索尝试过程中寻找解…

c++:类和对象(5),运算符重载

目录 运算符重载概念&#xff1a; 运算符重载 1.成员函数重载号 2.全局函数重载号 打印结果&#xff1a; <<运算符重载 递增运算符重载 简单例子 输出结果为&#xff1a; 赋值运算符重载 如何重载 输出结果为&#xff1a; 什么时候重载 关系运算符重载 简单例…