基于springboot跟redis实现的排行榜功能(实战)

概述

前段时间,做了一个世界杯竞猜积分排行榜。对世界杯64场球赛胜负平进行猜测,猜对+1分,错误+0分,一人一场只能猜一次。 1.展示前一百名列表。 2.展示个人排名(如:张三,您当前的排名106579)。 一.redis sorts sets简介 Sorted Sets数据类型就像是set和hash的混合。与sets一样,Sorted Sets是唯一的,不重复的字符串组成。可以说Sorted Sets也是Sets的一种。 Sorted Sets是通过Skip List(跳跃表)和hash Table(哈希表)的双端口数据结构实现的,因此每次添加元素时,Redis都会执行O(log(N))操作。所以当我们要求排序的时候,Redis根本不需要做任何工作了,早已经全部排好序了。元素的分数可以随时更新。 二.springboot 中使用RedisTemplate 本文主要通过redisTemplate来操作redis,当然也可以使用redis-client,看个人喜好.

详细

详细

一、运行效果

image.png

分析
一开始打算直接使用mysql数据库来做,遇到一个问题,每个人的分数都会变化,如何能够获取到个人的排名呢?数据库可以通过分数进行row_num排序,但是这个方法需要进行全表扫描,当参与的人数达到10000的时候查询就非常慢了。
redis的排行榜功能就完美锲合了这个需求。来看看我是怎么实现的吧。

二、实现过程

①、在本机开启了一个单点的redis,配置文件如下

   : springboot-redis-rank   :     : defaultDataSource     : jdbc:mysql://localhost:3306/blue?serverTimezone=UTC     : root     : 123456   :     : : 127.0.0.1     :     : : : 5000

②、Maven依赖引入如下

<parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.0.4.RELEASE</version>
</parent><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId></dependency>
</dependencies>

③、代码实现

1.注入redis,将key声明为常量SCORE_RANK

   
 @Autowiredprivate StringRedisTemplate redisTemplate;public static final String SCORE_RANK = "score_rank";

2.新增默认排行数据

/*** 批量新增*/@Testpublic void batchAdd() {Set<ZSetOperations.TypedTuple<String>> tuples = new HashSet<>();long start = System.currentTimeMillis();for (int i = 0; i < 100000; i++) {DefaultTypedTuple<String> tuple = new DefaultTypedTuple<>("张三" + i, 1D + i);tuples.add(tuple);}System.out.println("循环时间:" +( System.currentTimeMillis() - start));Long num = redisTemplate.opsForZSet().add(SCORE_RANK, tuples);System.out.println("批量新增时间:" +(System.currentTimeMillis() - start));System.out.println("受影响行数:" + num);}//输出
循环时间:56
批量新增时间:1015
受影响行数:100000

3.获取前10名(根据分数倒序)

/*** 获取排行列表*/@Testpublic void list() {Set<String> range = redisTemplate.opsForZSet().reverseRange(SCORE_RANK, 0, 10);System.out.println("获取到的排行列表:" + JSON.toJSONString(range));Set<ZSetOperations.TypedTuple<String>> rangeWithScores = redisTemplate.opsForZSet().reverseRangeWithScores(SCORE_RANK, 0, 10);System.out.println("获取到的排行和分数列表:" + JSON.toJSONString(rangeWithScores));}//输出
获取到的排行列表:["张三99999","张三99998","张三99997","张三99996","张三99995","张三99994","张三99993","张三99992","张三99991","张三99990","张三99989"]
获取到的排行和分数列表:[{"score":100000.0,"value":"张三99999"},{"score":99999.0,"value":"张三99998"},{"score":99998.0,"value":"张三99997"},{"score":99997.0,"value":"张三99996"},{"score":99996.0,"value":"张三99995"},{"score":99995.0,"value":"张三99994"},{"score":99994.0,"value":"张三99993"},{"score":99993.0,"value":"张三99992"},{"score":99992.0,"value":"张三99991"},{"score":99991.0,"value":"张三99990"},{"score":99990.0,"value":"张三99989"}]
 

4.新增李四的分数

/*** 单个新增*/@Testpublic void add() {redisTemplate.opsForZSet().add(SCORE_RANK, "李四", 8899);}

5.获取李四单人的排行

/*** 获取单个的排行*/@Testpublic void find(){Long rankNum = redisTemplate.opsForZSet().reverseRank(SCORE_RANK, "李四");System.out.println("李四的个人排名:" + rankNum);Double score = redisTemplate.opsForZSet().score(SCORE_RANK, "李四");System.out.println("李四的分数:" + score);}//输出
李四的个人排名:91101
李四的分数:8899.0

6.统计分数之间有多少人

/*** 统计两个分数之间的人数*/@Testpublic void count(){Long count = redisTemplate.opsForZSet().count(SCORE_RANK, 8001, 9000);System.out.println("统计8001-9000之间的人数:" + count);}//输出
统计8001-9000之间的人数:1001

7.获取集合的基数(数量大小)

  
/*** 获取整个集合的基数(数量大小)*/@Testpublic void zCard(){Long aLong = redisTemplate.opsForZSet().zCard(SCORE_RANK);System.out.println("集合的基数为:" + aLong);}//输出
集合的基数为:100001

8.使用加法操作分数

  /*** 使用加法操作分数*/@Testpublic void incrementScore(){Double score = redisTemplate.opsForZSet().incrementScore(SCORE_RANK, "李四", 1000);System.out.println("李四分数+1000后:" + score);}//输出
李四分数+1000后:9899.0

四.归纳

在以上测试类中我们使用了redis的那些功能呢?在以上的例子中我们使用了单个新增,批量新增,获取前十,获取单人排名这些操作,但是redisTemplate还提供了更多的方法。

新增or更新

有三种方式,一种是单个,一种是批量,对分数使用加法(如果不存在,则从0开始加)。

//单个新增or更新
Boolean add(K key, V value, double score);
//批量新增or更新
Long add(K key, Set<TypedTuple<V>> tuples);
//使用加法操作分数
Double incrementScore(K key, V value, double delta);
删除

删除提供了三种方式:通过key/values删除,通过排名区间删除,通过分数区间删除。

//通过key/value删除
Long remove(K key, Object... values);//通过排名区间删除
Long removeRange(K key, long start, long end);//通过分数区间删除
Long removeRangeByScore(K key, double min, double max);

1.列表查询:分为两大类,正序和逆序。以下只列表正序的,逆序的只需在方法前加上reverse即可:

//通过排名区间获取列表值集合

Set<V> range(K key, long start, long end);//通过排名区间获取列表值和分数集合
Set<TypedTuple<V>> rangeWithScores(K key, long start, long end);//通过分数区间获取列表值集合
Set<V> rangeByScore(K key, double min, double max);//通过分数区间获取列表值和分数集合
Set<TypedTuple<V>> rangeByScoreWithScores(K key, double min, double max);//通过Range对象删选再获取集合排行
Set<V> rangeByLex(K key, Range range);//通过Range对象删选再获取limit数量的集合排行
Set<V> rangeByLex(K key, Range range, Limit limit);

2.单人查询

可获取单人排行,和通过key/value获取分数。以下只列表正序的,逆序的只需在方法前加上reverse即可:

//获取个人排行
Long rank(K key, Object o);//获取个人分数
Double score(K key, Object o);
统计

统计分数区间的人数,统计集合基数。

//统计分数区间的人数Long count(K key, double min, double max);//统计集合基数Long zCard(K key);

三、项目结构图

image.png

四、补充

以上就是redis中使用排行榜功能的一些例子,和对redis的操作方法了。redis不仅仅只是作为缓存,它更是数据库,提供了许多的功能,我们都可以好好的利用。

在这里我使用redis来实现了世界杯积分排行的展示,无论是在批量更新或是获取个人排行等方便,都有着很高效率,也降低了对数据库操作的压力,达到了很好的效果。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/64613.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c#继承(new base)的使用

概述 C#中的继承是面向对象编程的重要概念之一&#xff0c;它允许一个类&#xff08;称为子类或派生类&#xff09;从另一个类&#xff08;称为父类或基类&#xff09;继承属性和行为。 继承的主要目的是实现代码重用和层次化的组织。子类可以继承父类的字段、属性、方法和事…

nvidia-smi nvcc -V 及 CUDA、cuDNN 安装

nvidia-smi nvcc -V 及 CUDA、cuDNN 安装 1. 问题缘由2. 分析3. CUDA Driver API 安装3.1 Software & Updates3.2 官网下载 4. CUDA Runtime API 安装5. 安装 cuDNN5.1 cuDNN下载 6. 一点点小注意事项 1. 问题缘由 之前查找 CUDA 版本时都是直接使用的 nvidia-smi 指令&am…

OpenCV(十三):图像中绘制直线、圆形、椭圆形、矩形、多边形和文字

目录 1.绘制直线line() 2.绘制圆形circle() 3.绘制椭圆形ellipse() 4.绘制矩形rectangle() 5.绘制多边形 fillPoly() 6.绘制文字putText() 7.例子 1.绘制直线line() CV_EXPORTS_W void line(InputOutputArray img,Point pt1, Point pt2,const Scalar& color,int t…

2021年03月 C/C++(六级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:生日相同 2.0 在一个有180人的大班级中,存在两个人生日相同的概率非常大,现给出每个学生的名字,出生月日。试找出所有生日相同的学生。 时间限制:1000 内存限制:65536 输入 第一行为整数n,表示有n个学生,n ≤ 180。此后每行包…

论文阅读_扩散模型_DDPM

英文名称: Denoising Diffusion Probabilistic Models 中文名称: 去噪扩散概率模型 论文地址: http://arxiv.org/abs/2006.11239 代码地址1: https://github.com/hojonathanho/diffusion &#xff08;论文对应代码 tensorflow&#xff09; 代码地址2: https://github.com/AUTOM…

java八股文面试[数据库]——索引的基本原理、设计原则

索引的设计原则 索引覆盖是什么&#xff1a; 索引&#xff08;在MySQL中也叫做“键&#xff08;key&#xff09;”&#xff09; 是存储引擎用于快速找到记录的一种数据结构。这是索引的基本功能。 索引对于良好的性能非常关键。尤其是当表中的数据量越来越大时&#xff0c;索引…

【小沐学Unity3d】3ds Max 多维子材质编辑(Multi/Sub-object)

文章目录 1、简介2、精简材质编辑器2.1 先创建多维子材质&#xff0c;后指定它2.2 先指定标准材质&#xff0c;后自动创建多维子材质 3、Slate材质编辑器3.1 编辑器简介3.2 编辑器使用 结语 1、简介 多维子材质&#xff08;Multi/Sub-object&#xff09;是为一个模形&#xff0…

使用Vue3和Vite升级你的Vue2+Webpack项目

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

使用PAM保障开发运营安全

硬编码凭据和 DevOps 系统中缺乏凭据安全性是组织的巨大漏洞。以明文形式访问凭据的恶意内部人员可以在 IT 中建立和扩展其立足点 基础设施&#xff0c;构成巨大的数据被盗风险。 什么是PAM 特权访问管理 &#xff08;PAM&#xff09; 是指一组 IT 安全管理原则&#xff0c;可…

解决gitee仓库中 .git 文件夹过大的问题

最近&#xff0c;许多项目都迁移到gitee。使用的也越来越频繁&#xff0c;但是今天突然收到一个仓库爆满的提示。让我一脸懵逼。本文将详细为你解答&#xff0c;这种情况如何处理。 1、起因 我收到的报错如下&#xff1a; remote: Powered by GITEE.COM [GNK-6.4] remote: T…

RDMA性能优化经验浅谈

一、RDMA概述 首先我们介绍一下RDMA的一些核心概念&#xff0c;当然了&#xff0c;我并不打算写他的API以及调用方式&#xff0c;我们更多关注这些基础概念背后的硬件执行方式和原理&#xff0c;对于这些原理的理解是能够写出高性能RDMA程序的关键。 Memory Region RDMA的网…

在访问一个网页时弹出的浏览器窗口,如何用selenium 网页自动化解决?

相信大家在使用selenium做网页自动化时&#xff0c;会遇到如下这样的一个场景&#xff1a; 在你使用get访问某一个网址时&#xff0c;会在页面中弹出如上图所示的弹出框。 首先想到是利用Alert类来处理它。 然而&#xff0c;很不幸&#xff0c;Alert类处理的结果就是没有结果…

ModaHub魔搭社区:自动化机器学习神器Auto-Sklearn

Auto-Sklearn Auto-Sklearn是一个开源库,用于在 Python 中执行 AutoML。它利用流行的 Scikit-Learn 机器学习库进行数据转换和机器学习算法。 它是由Matthias Feurer等人开发的。并在他们 2015 年题为“efficient and robust automated machine learning 高效且稳健的自动…

YOLOv7框架解析

YOLOv7概念 YOLOv7是基于YOLO系列的目标检测算法&#xff0c;由Ultra-Light-Fast-Detection&#xff08;ULFD&#xff09;和Scaled-YOLOv4两种算法结合而来。它是一种高效、准确的目标检测算法&#xff0c;具有以下特点&#xff1a; 1. 高效&#xff1a;YOLOv7在保持准确率的…

说说TIME_WAIT和CLOSE_WAIT区别

分析&回答 TCP协议规定&#xff0c;对于已经建立的连接&#xff0c;网络双方要进行四次握手才能成功断开连接&#xff0c;如果缺少了其中某个步骤&#xff0c;将会使连接处于假死状态&#xff0c;连接本身占用的资源不会被释放。网络服务器程序要同时管理大量连接&#xf…

MySQL索引和查询优化

文章目录 1.Mysql索引2. b- tree 与 b tree3.覆盖索引和回表查询4.查询优化1.Explain 5.优化实战举例**用户搜索****订单查询****分页查询** 1.Mysql索引 MySQL索引是一种用于提高数据库查询效率的数据结构。它可以加快数据检索的速度&#xff0c;减少查询所需的IO操作和计算…

leetcode 1365. 有多少小于当前数字的数字

2023.9.2 本题直观的解法就是双层for循环暴力求解&#xff1a; 暴力解&#xff1a; class Solution { public:vector<int> smallerNumbersThanCurrent(vector<int>& nums) {vector<int> ans;for(int i0; i<nums.size(); i){int temp 0;//比当前元素…

浅谈安防视频监控平台EasyCVR视频汇聚平台对于夏季可视化智能溺水安全告警平台的重要性

每年夏天都是溺水事故高发的时期&#xff0c;许多未成年人喜欢在有水源的地方嬉戏&#xff0c;这导致了悲剧的发生。常见的溺水事故发生地包括水库、水坑、池塘、河流、溪边和海边等场所。 为了加强溺水风险的提示和预警&#xff0c;完善各类安全防护设施&#xff0c;并及时发现…

解决 git clone 时出现Failed to connect to 127.0.0.1 port 1573问题

今天去拉一个仓库代码&#xff0c;往常都是一下就拉下来了&#xff0c;今天却报错&#xff0c;报错信息如下&#xff1a; 原因&#xff1a;这种情况是因为代理在git中配置的&#xff0c;但是本身环境就有SSL协议了&#xff0c;所以取消git的https或者http代理即可 方法如下&…

LeetCode-455-分发饼干-贪心算法

题目描述&#xff1a; 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&#xff1b;并且每块饼干 j&#xff…