【数学建模】插值与拟合

文章目录

  • 插值
    • 插值方法
    • 用Python解决插值问题
  • 拟合
    • 最小二乘拟合
    • 数据拟合的Python实现

适用情况
处理由试验、测量得到的大量数据或一些过于复杂而不便于计算的函数表达式时,构造一个简单函数作为要考察数据或复杂函数的近似
定义
给定一组数据,需要确定满足特定要求的曲线(或曲面)
插值:如果所求曲线通过所给定有限个数据点
拟合:要求所求曲线反映对象整体的变化态势,得到简单实用的近似函数

插值

在一系列数据点对中,一些数据点的函数值缺失,因而希望通过已有数据点得到函数的近似表达式从而近似出确实数据点的函数值

从性质优良、便于计算的函数类{P(x)}中选择一个使得 P ( x i ) = y i P(x_i) =y_i P(xi)=yi成立的P(x)作为f(x)的近似
x 0 , x 1 , . . . , x n x_0, x_1, ..., x_n x0,x1,...,xn成为插值节点
{ P ( x ) } \{P(x)\} {P(x)}称为插值函数类
P ( x i ) = y i ( i = 0 , 1 , . . . , n ) P(x_i) =y_i(i=0, 1, ..., n) P(xi)=yi(i=0,1,...,n)称为插值条件
得到的 P ( x ) P(x) P(x)称为插值函数
f ( x ) f(x) f(x)称为被插值函数

一维插值方法:一维Lagrange插值、分段线性插值、分段二次插值、牛顿插值和样条插值
二维插值方法:二维样条插值

插值方法

Lagrange插值
P ( x ) = ∑ i = 0 n l i ( x ) y i P(x)=\sum^n_{i=0}l_i(x)y_i P(x)=i=0nli(x)yi
其中 l i ( x ) l_i(x) li(x)称为以 x 0 , x 1 , . . . , x n x_0, x_1, ..., x_n x0,x1,...,xn为节点的Lagrange插值基函数
l i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j l_i(x) = \prod^n_{j=0, j\neq i} \frac{x-x_j}{x_i-x_j} li(x)=j=0,j=inxixjxxj

代码实现

def h(x,y,a):s = 0.0for i in range(len(y)):t = y[i]for j in range(len(y)):if i != j:t *= (a-x[j])(x[i]-x[j])s += treturn s

分段线性插值
用折线代替曲线 y = f ( x ) y = f(x) y=f(x),其中 P ( x ) P(x) P(x)
P ( x ) = x − x i x i + 1 − x i y i + 1 + x − x i + 1 x i − x i + 1 y i P(x) = \frac{x-x_i}{x_{i+1}-x_i}y_{i+1} + \frac{x-x_{i+1}}{x_i-x_{i+1}}y_i P(x)=xi+1xixxiyi+1+xixi+1xxi+1yi
其中 x ∈ [ x i , x i + 1 ] , i = 0 , 1 , . . . , n − 1 x \in [x_i, x_{i+1}], i=0,1,..., n-1 x[xi,xi+1],i=0,1,...,n1

分段二次插值
P ( x ) P(x) P(x)为一二次多项式,即适用分段抛物线代替 y = f ( x ) y=f(x) y=f(x)

牛顿插值
差分定义:函数 f ( x ) f(x) f(x),等距节点 x i = x 0 + i h ( i = 0 , 1 , . . . , n ) x_i=x_0+ih(i=0, 1, ..., n) xi=x0+ih(i=0,1,...,n),一阶前向差分 Δ f i = f i + 1 − f i \Delta f_i = f_{i+1}-f_i Δfi=fi+1fi, 高阶差分为差分的差分

  1. Δ 0 f ( x ) = f ( x ) \Delta^0 f(x) = f(x) Δ0f(x)=f(x)
  2. Δ m f ( x ) = Δ m − 1 f ( x + h ) − Δ m − 1 f ( x ) \Delta^m f(x) = \Delta^{m-1}f(x+h) - \Delta^{m-1}f(x) Δmf(x)=Δm1f(x+h)Δm1f(x)

递归函数计算差分

def diff_forward(f, k, h, x):if k<=0: return f(x)else: return diff_forward(f, k-1, h, x+h) - diff_forward(f, k-1, h, x)

差商定义:函数 f ( x ) f(x) f(x),相异节点 x 0 < x 1 < . . . < x n x_0 < x_1<... < x_n x0<x1<...<xn
函数 f ( x ) f(x) f(x)关于节点 x i x_i xi x j x_j xj的一阶差商 f [ x i , x j ] f[x_i, x_j] f[xi,xj]
f [ x i , x j ] = f ( x i ) − f ( x j ) x i − x j f[x_i, x_j] = \frac{f(x_i)-f(x_j)}{x_i-x_j} f[xi,xj]=xixjf(xi)f(xj)
f ( x ) f(x) f(x)关于点 x i x_i xi x j x_j xj x k x_k xk的二阶差商有
f [ x i , x j , x k ] = f [ x i , x j ] − f [ x j , x k ] x i − x k f[x_i, x_j, x_k]= \frac{f[x_i, x_j]-f[x_j, x_k]}{x_i-x_k} f[xi,xj,xk]=xixkf[xi,xj]f[xj,xk]
f ( x ) f(x) f(x)关于 x 0 , x 1 , . . . , x k x_0, x_1, ..., x_k x0,x1,...,xk k k k阶差商为
f [ x 0 , x 1 , . . . , x k ] = f [ x 0 , x 1 , . . . , x k − 1 ] − f [ x 1 , x 2 , . . . , x k ] x 0 − x k f[x_0, x_1, ..., x_k] = \frac{f[x_0, x_1, ..., x_{k-1}]-f[x_1, x_2, ..., x_k]}{x_0-x_k} f[x0,x1,...,xk]=x0xkf[x0,x1,...,xk1]f[x1,x2,...,xk]

代码示例:计算 k + 1 k+1 k+1个点对数据的 k k k阶差商

def diff_quo(xi=[], fi=[]):if len(xi)>2 and len(fi)>2:return (diff_quo(xi[:len(xi)-1],fi[:len(fi)-1])-diff_quo(xi[1:len(xi)],fi[1:len(fi)])) / float(xi[0]-xi[-1])  return (fi[0]- fi[1])/float(xi[0]-xi[1])

Newton插值公式
一次Newton插值多项式: N 1 ( x ) = f ( x 0 ) + ( x − x 0 ) f [ x 0 , x 1 ] N_1(x)=f(x_0)+(x-x_0)f[x_0, x_1] N1(x)=f(x0)+(xx0)f[x0,x1]
再根据各阶差商的定义,可以得到 N n ( x ) N_n(x) Nn(x) f ( x ) f(x) f(x) n n n次插值多项式

样条插值
适用于对插值函数的光滑性有较高要求的问题
样条函数:具有一定光滑性的分段多项式
给定 [ a , b ] [a,b] [a,b]的一个分划, Δ : a = x 0 < x 1 < . . . < x n = b \Delta: a=x_0 < x_1 < ... < x_n=b Δ:a=x0<x1<...<xn=b
S ( x ) S(x) S(x)在各个小区间 [ x i , x i + 1 ] ( i = 0 , 1 , . . . , n − 1 ) [x_i, x_{i+1}](i=0, 1, ..., n-1) [xi,xi+1](i=0,1,...,n1)上为 m m m次多项式,且有 m − 1 m-1 m1阶连续导数,称 S ( x ) S(x) S(x)为关于分划 Δ \Delta Δ m m m次样条函数,折线属于一次样条曲线

二维数据的双三次样条插值
考虑二维数据的插值时,需要考虑到插值区域是否规则,给定数据是有规律分布的还是散乱、随机分布的
当二维数据在规则区域上有规律分布时,可以考虑用双三次样条插值,即求解一个 S ( x ) S(x) S(x)满足对 x x x y y y都是三次的多项式
image.png

用Python解决插值问题

scipy.interpolatemodule有一维插值函数interp1d、二维插值函数interp2d和多维插值函数interpn

一维插值
interp1d(x, y, kind='linear')
说明:kind参数取值为字符串,指明插值方法,取值包括linear线性插值、zero0阶样条插值、slinear1阶样条插值、quadratic2阶样条插值、cubic3阶样条插值
image.png
代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d 
x=np.arange(0,25,2)
y=np.array([12, 9, 9, 10, 18, 24, 28, 27, 25, 20, 18, 15, 13])
xnew=np.linspace(0, 24, 500)  #插值点
f1=interp1d(x, y); 
y1=f1(xnew);
f2=interp1d(x, y,'cubic'); 
y2=f2(xnew)
plt.rc('font',size=16); 
plt.rc('font',family='SimHei')
plt.subplot(121)
plt.plot(xnew, y1)
plt.xlabel("(A)分段线性插值")
plt.subplot(122)
plt.plot(xnew, y2)
plt.xlabel("(B)三次样条插值")
plt.savefig("figure7_4.png", dpi=500)
plt.show()

image.png

二维网格节点插值
image.png
image.png

思路:原始数据为100x100网格节点的数据,为提高精度,适用双三次样条插值,得到该区域上10x10网格节点的数据。把 0 ≤ x ≤ 1400 ∧ 0 ≤ y ≤ 1200 0 \leq x \leq 1400 \land 0 \leq y \leq 1200 0x14000y1200 数据分为140x120个小矩形计算对应曲面面积,每个矩形分为两个三角形,再利用海伦公式求解
代码:

from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import norm
from scipy.interpolate import interp2d
z=np.loadtxt("Pdata7_5.txt")  #加载高程数据
x=np.arange(0,1500,100)
y=np.arange(1200,-100,-100)
f=interp2d(x, y, z, 'cubic')
xn=np.linspace(0,1400,141)
yn=np.linspace(0,1200,121)
zn=f(xn, yn)
m=len(xn); n=len(yn); s=0; 
for i in np.arange(m-1):for j in np.arange(n-1):p1=np.array([xn[i],yn[j],zn[j,i]])p2=np.array([xn[i+1],yn[j],zn[j,i+1]])p3=np.array([xn[i+1],yn[j+1],zn[j+1,i+1]])p4=np.array([xn[i],yn[j+1],zn[j+1,i]])p12=norm(p1-p2); p23=norm(p3-p2); p13=norm(p3-p1);p14=norm(p4-p1); p34=norm(p4-p3);L1=(p12+p23+p13)/2;s1=np.sqrt(L1*(L1-p12)*(L1-p23)*(L1-p13));L2=(p13+p14+p34)/2; s2=np.sqrt(L2*(L2-p13)*(L2-p14)*(L2-p34));s=s+s1+s2;  
print("区域的面积为:", s)
plt.rc('font',size=16); plt.rc('text',usetex=True)
plt.subplot(121); contr=plt.contour(xn,yn,zn); plt.clabel(contr)
plt.xlabel('$x$'); plt.ylabel('$y$',rotation=90)
ax=plt.subplot(122,projection='3d'); 
X,Y=np.meshgrid(xn,yn)
ax.plot_surface(X, Y, zn,cmap='viridis')
ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$')
plt.savefig('figure7_5.png',dpi=500); plt.show()

二维乱点插值
image.png
代码:

from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import griddata
x=np.array([129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5])
y=np.array([7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5])
z=-np.array([4,8,6,8,6,8,8,9,9,8,8,9,4,9])
xy=np.vstack([x,y]).T
xn=np.linspace(x.min(), x.max(), 100)
yn=np.linspace(y.min(), y.max(), 100)
xng, yng = np.meshgrid(xn,yn)  #构造网格节点
zn=griddata(xy, z, (xng, yng), method='nearest')  #最近邻点插值
plt.rc('font',size=16); plt.rc('text',usetex=True)
ax=plt.subplot(121,projection='3d'); 
ax.plot_surface(xng, yng, zn,cmap='viridis')
ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$')
plt.subplot(122); c=plt.contour(xn,yn,zn,8); plt.clabel(c)
plt.savefig('figure7_6.png',dpi=500); plt.show()

拟合

最小二乘拟合

解决什么问题?
已知一组二维数据,即平面上 n n n个点 ( x i , y i ) ( i = 1 , 2 , . . . , n ) (x_i, y_i)(i=1, 2, ..., n) (xi,yi)(i=1,2,...,n) x i x_i xi互不相同,求函数 f ( x ) f(x) f(x)使得 f ( x ) f(x) f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好
残差: δ i = f ( x i ) − y i , i = 1 , 2 , . . . , n \delta_i=f(x_i)-y_i, i=1,2,...,n δi=f(xi)yi,i=1,2,...,n
最小二乘法使用的判定准则为残差的平和和最小,即
a r g m i n J = ∑ i = 1 n ( f ( x i ) − y i ) 2 argmin \quad J=\sum^n_{i=1}(f(x_i)-y_i)^2 argminJ=i=1n(f(xi)yi)2
最终得到拟合函数 f ( x ) = f ( x , a 1 , a 2 , . . . , a n ) f(x) = f(x, a_1, a_2, ..., a_n) f(x)=f(x,a1,a2,...,an)
根据参数 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an线性与否,最小二乘法分为线性最小二乘和非线性最小二乘

线性最小二乘法
给定线性无关的函数系 { ϕ k ( x ) ∣ k = 1 , 2 , . . . , m } \{\phi_k(x)|k=1,2,...,m\} {ϕk(x)k=1,2,...,m}
若有拟合函数 f ( x ) = ∑ k = 1 m a k ϕ k ( x ) f(x) = \sum^m_{k=1}a_k \phi_k(x) f(x)=k=1makϕk(x),例如 f ( x ) = a m x m − 1 + a m − 1 x m − 2 + . . . + a 2 x + a 1 f(x)=a_mx^{m-1}+a_{m-1}x^{m-2}+...+a_2x+a_1 f(x)=amxm1+am1xm2+...+a2x+a1 f ( x ) = ∑ k = 1 m a k c o s ( k x ) f(x) = \sum^m_{k=1}a_k cos(kx) f(x)=k=1makcos(kx)
f ( x ) = f ( x , a 1 , a 2 , . . . , a m ) f(x)=f(x,a_1, a_2, ..., a_m) f(x)=f(x,a1,a2,...,am)为关于参数 a 1 , a 2 , . . . , a m a_1,a_2,..., a_m a1,a2,...,am的线性函数
f ( x ) f(x) f(x)带入 J J J的计算,根据
∂ J ∂ a k = 0 , k = 1 , 2 , ⋯ , m \frac{\partial J}{\partial a_k}=0,\quad k=1,2,\cdots,m akJ=0,k=1,2,,m
即:
∑ i = 1 n [ ( f ( x i ) − y i ) φ k ( x i ) ] = 0 , k = 1 , 2 , ⋯ , m \sum_{i=1}^{n}\left[\left(f\left(x_{i}\right)-y_{i}\right) \varphi_{k}\left(x_{i}\right)\right]=0, \quad k=1,2, \cdots, m i=1n[(f(xi)yi)φk(xi)]=0,k=1,2,,m
得到:
image.png
形成一个关于 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am的线性方程组,记号说明如下:
image.png
则正规方程组改写为
R T R A = R T Y R^TRA=R^TY RTRA=RTY
当矩阵 R R R列满秩时, R T R R^TR RTR可逆,此时正规方程组有唯一解,即
A = ( R T R ) − 1 R T Y A=(R^TR)^{-1}R^TY A=(RTR)1RTY
非线性最小二乘拟合
当拟合函数不能以 ϕ k ( x ) \phi_k(x) ϕk(x)线性组合的形式构成时,例如下列形式:
image.png
使用同样的“最小化偏差”方法求解参数

拟合函数的选择
先做出数据的散点图,从直观上判断应选用什么样的拟合函数
举个例子
若数据分布接近直线,使用线性函数 f ( x ) = a 1 x + a 2 f(x)=a_1x+a_2 f(x)=a1x+a2
若数据分布接近抛物线,使用二次多项式 f ( x ) = a 1 x 2 + a 2 x + a 3 f(x)=a_1x^2+a_2x+a_3 f(x)=a1x2+a2x+a3
若数据分布是开始上升块随后逐渐变缓,使用双曲线型函数或指数型函数,即
image.png
若数据分布是开始下降较快随后逐渐变缓,使用
image.png

数据拟合的Python实现

利用NumPy库中的多项式拟合函数polyfitscipy.optimize模块中的curve_fit函数

image.png

polyfit的用法
代码展示:

from numpy import polyfit, polyval, array, arange
from matplotlib.pyplot import plot,show,rc
x0=arange(0, 1.1, 0.1)
y0=array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
p=polyfit(x0, y0, 2) #拟合二次多项式
print("拟合二次多项式的从高次幂到低次幂系数分别为:",p)
yhat=polyval(p,[0.25, 0.35]); print("预测值分别为:", yhat)
rc('font',size=16)
plot(x0, y0, '*', x0, polyval(p, x0), '-'); show()

curve_fit的用法
调用格式
popt, pcov = curve_fit(func, xdata, ydata)
参数说明:func为拟合的函数,xdata是自变量的观测值,ydata是函数的观测值,返回值popt是拟合的参数,pcov是参数的协方差矩阵
代码展示:

import numpy as np
from scipy.optimize import curve_fit
y=lambda x, a, b, c: a*x**2+b*x+c
x0=np.arange(0, 1.1, 0.1)
y0=np.array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
popt, pcov=curve_fit(y, x0, y0)
print("拟合的参数值为:", popt)
print("预测值分别为:", y(np.array([0.25, 0.35]), *popt))

实例练习
image.png
代码:

import numpy as np
from scipy.optimize import curve_fit
x0=np.array([6, 2, 6, 7, 4, 2, 5, 9])
y0=np.array([4, 9, 5, 3, 8, 5, 8, 2])
z0=np.array([5, 2, 1, 9, 7, 4, 3, 3])
xy0=np.vstack((x0, y0))
def Pfun(t, a, b, c):return a*np.exp(b*t[0])+c*t[1]**2
popt, pcov=curve_fit(Pfun, xy0, z0)
print("a,b,c的拟合值为:", popt)

image.png
代码:

from mpl_toolkits import mplot3d
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
m=200; n=300
x=np.linspace(-6, 6, m); y=np.linspace(-8, 8, n);
x2, y2 = np.meshgrid(x, y)
x3=np.reshape(x2,(1,-1)); y3=np.reshape(y2, (1,-1))
xy=np.vstack((x3,y3))
def Pfun(t, m1, m2, s):return np.exp(-((t[0]-m1)**2+(t[1]-m2)**2)/(2*s**2))
z=Pfun(xy, 1, 2, 3); zr=z+0.2*np.random.normal(size=z.shape) #噪声数据
popt, pcov=curve_fit(Pfun, xy, zr)   #拟合参数
print("三个参数的拟合值分别为:",popt)
zn=Pfun(xy, *popt)  #计算拟合函数的值
zn2=np.reshape(zn, x2.shape)
plt.rc('font',size=16)
ax=plt.axes(projection='3d') #创建一个三维坐标轴对象
ax.plot_surface(x2, y2, zn2,cmap='gist_rainbow')
plt.savefig("figure7_10.png", dpi=500); plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/645276.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【软件测试】学习笔记-性能测试场景的分类

性能测试场景的重要程度类似于业务测试的 case&#xff0c;case 是你进行业务测试的指引&#xff0c;case 是否完善也直接决定了测试的覆盖率。同理&#xff0c;场景是传递执行性能测试的步骤和目的&#xff0c;关于这两点是你一定要清楚的。 首先认识下最重要的三个性能场景&…

Java项目:12 Springboot的垃圾回收管理系统

作者主页&#xff1a;舒克日记 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 1.介绍 垃圾分类查询管理系统&#xff0c;对不懂的垃圾进行查询进行分类并可以预约上门回收垃圾。 让用户自己分类垃圾&#xff0c; 按国家标准自己分类&#x…

解读IP风险画像标签:深度洞察网络安全

在当今数字化的世界中&#xff0c;网络安全成为企业和个人关注的焦点。IP风险画像标签作为网络安全的利器&#xff0c;扮演着深度洞察网络风险的角色。本文将深入解读IP风险画像标签&#xff0c;揭示其在网络安全领域的重要性和功能。 1. IP风险画像标签是什么&#xff1f; I…

Jmeter-解析返回参数-解析并操作json

工作中经常会遇到JSON字符串&#xff0c;接口的入参和返回参数也多数是JSON格式&#xff0c;自动化项目中常需要写脚本处理返回结果&#xff0c;本文总结java或jmeter的beanshell脚本中对于json的常用操作 json字符串的格式 简单的JSON字符串&#xff1a;{“key”:“value”,“…

【服务器数据恢复】EqualLogic存储磁盘坏道导致存储不可用的数据恢复案例

服务器数据恢复环境&故障&#xff1a; 某公司IT部门一台某品牌EqualLogic PS6100系列存储在运行过程中突然崩溃。 服务器管理员对故障服务器存储进行初步检查&#xff0c;经过检测发现导致该服务器存储无法正常工作的原因是该存储中raid5磁盘阵列内有2块硬盘出现故障离线&a…

数字图像处理(实践篇)二十七 Python-OpenCV 滑动条的使用

目录 1 涉及的函数 2 实践 1 涉及的函数 ⒈ setWindowProperty()用于设置GUI应用程序的属性 cv2.setWindowProperty(windowsName, prop_id, prop_value) 参数: ①

UI 自动化测试框架:PO 模式+数据驱动

1. PO 设计模式简介 什么是 PO 模式&#xff1f; PO&#xff08;PageObject&#xff09;设计模式将某个页面的所有元素对象定位和对元素对象的操作封装成一个 Page 类&#xff0c;并以页面为单位来写测试用例&#xff0c;实现页面对象和测试用例的分离。 PO 模式的设计思想与…

Nodejs--Linux环境安装及配置

一、下载安装包 &#xff08;1&#xff09;通过命令uname -a 查看Linux系统版本。 &#xff08;2&#xff09;打开官网下载地址&#xff1a; https://www.nodejs.com.cn/ 选择对应的版本下载安装包。 &#xff08;3&#xff09;将下载好的安装包传到Linux对应目录进行解压。…

想要透明拼接屏展现更加效果,视频源是技术活,尤其作为直播背景

随着科技的飞速发展&#xff0c;视频制作和显示技术也在不断进步。透明拼接屏视频作为一种新型的视频形式&#xff0c;在许多场合都得到了广泛的应用。尼伽小编将深入探讨透明拼接屏视频的制作过程、要求、清晰度&#xff0c;以及目前常作为直播背景的优势。 一、透明拼接屏视频…

力扣hot100 两两交换链表中的节点 双指针

Problem: 24. 两两交换链表中的节点 复杂度 时间复杂度: O ( n ) O(n) O(n) 空间复杂度: O ( 1 ) O(1) O(1) Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { …

国民技术N32G430C8开发笔记二-UART驱动开发

参考demo E:\tfs\data\smartsafe\N32G430\Nations.N32G430_Library.1.0.0\projects\n32g430_EVAL\examples\USART\Interrupt开发uart1和uart3驱动。Uart1用于通信&#xff0c;uart3用于调试。 参考用户手册5.2.5复用功能。Uart1_tx引脚使用PA9&#xff0c;重映射使用AF5&#x…

SpringMVC第二天

今日内容 能够掌握SSM整合的流程 能够编写SSM整合功能模块类 能够使用Result统一表现层响应结果 能够编写异常处理器进行项目异常 能够完成SSM整合前端页面发送请求实现增删改查操作 能够编写拦截器并配置拦截器 一、SSM整合【重点】 1 SSM整合配置 问题导入 请描述“SSM整…

加速应用开发:低代码云SaaS和源码交付模式如何选

随着数字化转型的加速&#xff0c;企业对于快速开发和交付高质量应用的需求也越来越迫切。为了满足这一需求&#xff0c;开发者们开始探索采用低代码平台进行软件开发工作&#xff0c;以加速应用开发过程。 目前&#xff0c;市场上的低代码产品众多&#xff0c;但基本可分为简单…

黑马Java——面向对象进阶(static继承)

1.static静态变量 静态变量是随着类的加载而加载的&#xff0c;优先与对象出现的

写一份简单的产品说明书:格式和排版建议

现在的市场竞争那么激烈&#xff0c;拥有一份简洁明了的产品说明书可以说是很重要的。产品说明书不仅向用户提供了对产品的详细了解&#xff0c;还能够树立品牌形象&#xff0c;提升用户体验。 | 一、写一份简单的产品说明书—一些建议 1.创意封面设计 一个吸引人的封面设计能…

【数据结构】 循环队列的基本操作 (C语言版)

目录 一、顺序队列 1、顺序队列的定义&#xff1a; 2、顺序队列的优缺点&#xff1a; 二、循环队列 1、循环队列的定义&#xff1a; 2、循环队列的优缺点&#xff1a; 三、循环队列的基本操作算法&#xff08;C语言&#xff09; 1、宏定义 2、创建结构体 3、循环队…

跨平台同步 Shell 历史记录,无缝切换会话 | 开源日报 No.154

atuinsh/atuin Stars: 14.3k License: MIT Atuin 是一个用 SQLite 数据库替换现有 shell 历史记录的工具&#xff0c;可以记录命令的额外上下文&#xff0c;并提供可选且完全加密的历史同步功能。其主要功能和核心优势包括&#xff1a; 重新绑定 ctrl-r 和 up (可配置) 到全屏…

书生·浦语大模型--第五节课笔记作业--LMDeploy 大模型量化部署实践

文章目录 大模型部署背景LMDeploy简介动手实践创建环境服务部署在线转换离线转换TurboMind推理API服务Gradio 作为前端 Demo演示TurboMind 服务作为后端TurboMind 推理作为后端 作业 大模型部署背景 部署&#xff1a;将训练好的模型在特定软硬件环境中启动的过程 挑战&#x…

Leetcode—2788. 按分隔符拆分字符串【简单】(stringstream的应用)

2023每日刷题&#xff08;八十六&#xff09; Leetcode—2788. 按分隔符拆分字符串 实现代码 class Solution { public:vector<string> splitWordsBySeparator(vector<string>& words, char separator) {vector<string> res;for(auto word: words) {st…

关于标准那些事——第十篇 分类标准

最近要赶一个极其重要的CANS认证项目&#xff0c;这会是全中国第一个完全数字化CNAS认证的实验室项目&#xff0c;内容分享进度会比较慢。其实&#xff0c;大多数情况也并不是没有时间&#xff0c;俗话说&#xff1a;时间嘛&#xff0c;挤挤总是有的&#xff01;其实影响进度更…