Spark运行架构以及容错机制

Spark运行架构以及容错机制

  • 1. Spark的角色区分
    • 1.1 Driver
    • 1.2 Excuter
  • 2. Spark-Cluster模式的任务提交流程
    • 2.1 Spark On Yarn的任务提交流程
      • 2.1.1 yarn相关概念
      • 2.1.2 任务提交流程
    • 2.2 Spark On K8S的任务提交流程
      • 2.2.1 k8s相关概念
      • 2.2.2 任务提交流程
  • 3. Spark-Cluster模式的容灾模式
    • 3.1 Driver容灾
    • 3.2 Executor容灾
    • 3.3 RDD容错
  • 4. 疑问和思考
    • 4.1 是否可以部署多个Driver,形成HA模式,如果主Driver宕机,备Driver自动接替?
  • 5. 参考文档

spark是一个开发框架,用于进行数据批处理,本文主要探讨Spark任务运行的的架构。由于在日常生产环境中,常用的是spark on yarn 和spark on k8s两种类型的模式,因此本文也主要探讨这两种类型的异同,以及不同角色的容错机制。


1. Spark的角色区分

1.1 Driver

Spark的驱动器节点,负责运行Spark程序中的main方法,执行实际的代码。Driver在Spark作业时主要负责:

  • 将用户程序转化为作业(job)
  • 负责跟RM(yarn)或者 Apiserver(k8s)申请资源,调度并拉起Excutor,协调和分配Executor之间的任务(task)
  • 监控Executor的执行状态
  • 通过UI展示运行情况。

1.2 Excuter

Executor是Spark程序中的一个JVM进程,负责执行Spark作业的具体任务(task),每个任务之间彼此相互独立。Spark应用启动时,Executor同时被启动,并且伴随着Spark程序的生命周期而存在。如果有Executor节点发生了故障,程序也不会停止运行,而是将出错的Executor节点上的任务调度到其他Executor节点运行。

Executor的核心功能:

  • 运行Spark作业中具体的任务,并且将执行结果返回给Driver。
  • 通过自身的块管理器(Block Manager)对用户要求缓存的RDD进行内存式存储。RDD式缓存在Executor进程内部的,这样任务在运行时可以充分利用缓存数据加速运算。

2. Spark-Cluster模式的任务提交流程

2.1 Spark On Yarn的任务提交流程

2.1.1 yarn相关概念

RM(ResourceManager):

即资源管理,在YARN中,RM负责集群中所有资源的统一管理和分配,它接收来自各个节点(NM)的资源汇报信息,并把这些信息按照一定的策略分配给各个应用程序(实际上是AM)

NM(NodeManager):
NM是运行在单个节点上的代理,它需要与应用程序的AM和集群管理者RM交互:

  • 从AM上接收有关Container的命令并执行之(比如启动、停止Container);
  • 向RM汇报各个Container运行状态和节点健康状况,并领取有关Container的命令(比如清理Container)执行之。

AM(ApplicationMaster):

用户提交的每个应用程序均包含一个AM,它可以运行在RM以外的机器上负责,主要负责

  • 与RM调度器协商以获取资源(用Container表示),将得到的任务进一步分配给内部的任务(资源的二次分配)。
  • 与NM通信以启动/停止任务。
  • 监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

注:RM只负责监控AM,并在AM运行失败时候启动它。RM不负责AM内部任务的容错,任务的容错由AM完成。

在Yarn任务的启动流程中,

  • client优先跟RM获取NM资源并启动AM,在Cluster模式下,AM启动后client就可以退出了
  • AM构建任务信息,并RM获取NM资源并启动Executor,并将task信息分配给Executor从而实现任务启动
  • Executor需要跟AM进行心跳汇报,如果Executor异常,相关的拉起动作也是有AM来控制。

2.1.2 任务提交流程

Driver和AM是两个完全不同的东西,Driver是控制Spark计算和任务资源的,而AM是控制yarn app运行和任务资源的。在Spark On Yarn模式中,Driver运行在AM上,Driver会和AM通信,资源的申请由AppMaster来完成,而任务的调度和执行则由Driver完成,Driver会通过与AppMaster通信来让Executor的执行具体的任务。

任务提交流程图
在这里插入图片描述
执行过程

  1. Client向YARN中提交应⽤程序,包括AM程序、启动AM的命令、需要在Executor中运⾏的程序等
  2. RM收到请求后,在集群中选择⼀个NM,为该应⽤程序分配第⼀个Container,要求它在这个Container中启动应⽤程序的AM,进行SparkContext(Driver)等的初始化
  3. AM向RM注册,这样⽤户可以直接通过RM查看应⽤程序的运⾏状态,然后它将采⽤轮询的⽅式通过RPC协议为各个任务申请资源,并监控它们的运⾏状态直到运⾏结束
  4. ⼀旦AM申请到资源(也就是Container)后,便与对应的NM通信,要求它在获得的Container中启动Executor,Executor启动后会向 AM中的SparkContext(Driver)注册并申请Task。
  5. AM中的SparkContext(Driver)分配Task给Executor执⾏,运⾏Task并向AM中的SparkContext(Driver)的汇报运⾏的状态和进度,以让 AM中的SparkContext(Driver)随时掌握各个任务的运⾏状态,从⽽可以在任务失败时重新启动任务应⽤程序运⾏完成后,AM中的SparkContext(Driver)向NM申请注销并关闭⾃⼰
    6.应⽤程序运⾏完成后,AM向NM申请注销并关闭⾃⼰

YARN-Cluster的执行,需要安装spark 客户端,并执行如下命令提交任务

spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn  --deploy-mode cluster \
--num-executors 1 \
/Users/ly/apps/spark-2.2.0-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.2.0.jar 10

在这里插入图片描述

2.2 Spark On K8S的任务提交流程

Spark 2.3开始,Spark官方就开始支持Kubernetes作为新的资源调度模式。

2.2.1 k8s相关概念

Master:
Kubernetes里的Master指的是集群控制节点,每一个Kubernetes集群里都必须要有一个Master节点来负责整个集群的管理和控制,基本上Kubernetes的所有控制命令都发给它,它来负责具体的执行过程,我们后面执行的所有命令基本都是在Master节点上运行的

Node:
Node节点是Kubernetes集群中的工作负载节点,每个Node都会被Master分配一些应用程序服务以及云工作流。

2.2.2 任务提交流程

总体提交流程如下

在这里插入图片描述

可以通过spark原生提交方式spark-on-k8s-operator提交 两种方式进行提交,两种方式实现上有些差异,但是总体流程是一致的。

1, spark原生提交方式

需要安装spark 客户端,并执行如下命令提交任务

bin/spark-submit \--master k8s://https://{k8s-apiserver-host}:6443 \--deploy-mode cluster \--name spark-wordcount-example \--class org.apache.spark.examples.JavaWordCount \local:///opt/spark/examples/target/scala-2.11/jars/spark-examples_2.11-2.4.5.jar \oss://{wordcount-file-oss-bucket}/

2, spark-on-k8s-operator提交

spark-on-k8s-operator[2],可以让用户以CRD(CustomResourceDefinition) [4] 的方式提交和管理Spark作业。这种方式能够更好的利用k8s原生的能力,具备更好的扩展性。并且在此之上增加了定时任务、重试、监控等一系列功能。具体的功能特性可以在github查看官方文档(kubernetes官方推荐)

需要
1, 需要提前在k8s集群中安装,此时会启动一个名为sparkoperator的pod
2,定义提交spark任务的相关CRD资源
3,提交作业时,无需准备一个具备Spark环境的Client,直接通过kubectl或者kubernetes api就可以提交Spark作业。

列入一个crd,命名spark.yaml

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:name: spark-wordcount-examplenamespace: default
spec:type: JavasparkVersion: 2.4.5mainClass: org.apache.spark.examples.JavaWordCountimage: {Spark镜像地址}mainApplicationFile: "local:///opt/spark/examples/target/scala-2.11/jars/spark-examples_2.11-2.4.5.jar"arguments:- "oss://{wordcount-file-oss-bucket}/"driver:cores: 1coreLimit: 1000mmemory: 4gexecutor:cores: 1coreLimit: 1000mmemory: 4gmemoryOverhead: 1ginstances: 2

执行如下命令即可启动相关的pod,并进行提交任务

kubectl apply -f spark.yaml

在这里插入图片描述

3. Spark-Cluster模式的容灾模式

3.1 Driver容灾

Driver异常退出时,一般要使用checkpoint重启Driver,重新构造上下文并重启接收器。
第一步,恢复检查点记录的元数据块。
第二步,未完成作业的重新形成。由于失败而没有处理完成的RDD,将使用恢复的元数据重新生成RDD,然后运行后续的Job重新计算后恢复。

3.2 Executor容灾

Executor异常是日常生产环境中最常遇到的现象,造成的原因很多,最常见的是由于机器故障,从而导致就上运行的Executor异常。

Executor异常退出时,Driver没有在规定时间内收到执行器的状态更新,于是Driver会将注册的Executor移除,并通过调度器自动重新拉起Executor。新启动的Executor会重新注册到Driver中,Driver会根据DAG给Executor重新分配相关的Task。Executor分配到到来自Driver的Task,需要重checkpoint重新加载数据并继续执行计算。Spark运算数据行程DAG,如果遇到不同的Executor之间有数据交互时(比如ExecutorA的数据聚合依赖于ExecutorB和ExecutorC,ExecutorB宕机,ExecutorA的数据聚合也不准确),不能简单的通过启动对应的Executor相关的数据进行恢复(可能会有数据紊乱),通常恢复的时间较久

3.3 RDD容错

窄依赖
指父RDD的每一个分区最多被一个子RDD的分区所用,表现为一个父RDD的分区对应于一个子RDD的分区 或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区。

宽依赖
指子RDD的分区依赖于父RDD的多个分区或所有分区,即存在一个父RDD的一个分区对应一个子RDD的多个分区。

checkpoint机制
是为了通过lineage做容错的辅助,lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销。

注意
1, 在容错机制中,如果一个节点死机了,而且运算窄依赖,则只要把丢失的父RDD分区重算即可,不依赖于其他节点。
2, 而宽依赖需要父RDD的所有分区都存在,重算就很昂贵了。如果恢复的代价过于昂贵,就会通过checkpoints重新进行计算。
3,利用checkpoint机制,记载最新的数据计算点,重新拉起任务进行计算

4. 疑问和思考

4.1 是否可以部署多个Driver,形成HA模式,如果主Driver宕机,备Driver自动接替?

可以,基于ZK进行选主。

5. 参考文档

  • Spark 容错以及高可用性HA
  • Spark 容错机制
  • Spark on Kubernetes作业执行流程
  • Spark on Yarn运行机制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/643295.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BACnet网关BA100实现Modbus转BACnet,专为Modbus协议设备与BA系统的高效对接设计

随着物联网技术的迅猛发展,人们深刻认识到在智能化生产和生活中,实时、可靠、安全的数据传输至关重要。在此背景下,高性能的物联网数据传输解决方案——协议转换网关应运而生,广泛应用于工业自动化和数字化工厂应用环境中。 钡铼…

搜维尔科技:【简报】元宇宙数字人赛道,《莉思菱娜》

个性有些古灵精怪时儿安静时而吵闹,虽然以人类寿命来算已经200多岁但在 吸血鬼中还只是个小毛头,从中学开始喜欢打扮偏爱黑白灰色系的服装喜欢时 尚圈,立志想成为美妆或时尚网红不过目前还是学生,脸上的浅色血迹是纹身 贴纸&#…

深度学习-循环神经网络-RNN实现股价预测-LSTM自动生成文本

序列模型(Sequence Model) 基于文本内容及其前后信息进行预测 基于目标不同时刻状态进行预测 基于数据历史信息进行预测 序列模型:输入或者输出中包含有序列数据的模型 突出数据的前后序列关系 两大特点: 输入(输出)元素之间是具有顺序关系。不同的顺序,得到的结果应…

安全基础~通用漏洞1

文章目录 知识补充Acess数据库注入MySQL数据库PostgreSQL-高权限读写注入MSSQL-sa高权限读写执行注入Oracle 注入Mongodb 注入sqlmap基础命令 知识补充 order by的意义: union 操作符用于合并两个或多个 select语句的结果集。 union 内部的每个 select 语句必须拥有…

哈希--73. 矩阵置零/medium 理解度A

73. 矩阵置零 1、题目2、题目分析3、复杂度最优解代码示例4、适用场景 1、题目 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,…

$.ajax与同源策略

1.jQuery中的ajax请求 学习Jquery中的ajax,我们借助官方文档 $.ajax(url,[settings]) | jQuery API 3.2 中文文档 | jQuery API 在线手册 使用$.ajax()方法完成图书案例 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8&quo…

mc我的世界服务器多少钱一个月?

我的世界服务器多少钱一个月&#xff1f;低至7元一个月&#xff0c;阿里云和腾讯云均可以选择mc服务器&#xff0c;阿里云2核2G3M轻量服务器87元一年、腾讯云轻量2核2G3M服务器88元一年&#xff0c;阿里云ECS云服务器2核2G3M带宽99元一年&#xff0c;腾讯云2核4G5M带宽轻量应用…

RabbitMQ中交换机的应用 ,原理 ,案例的实现

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是平顶山大师&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《RabbitMQ中交换机的应用及原理&#xff0c;案…

8.Gateway服务网关

3.Gateway服务网关 Spring Cloud Gateway 是 Spring Cloud 的一个全新项目&#xff0c;该项目是基于 Spring 5.0&#xff0c;Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关&#xff0c;它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式…

JVM工作原理与实战(二十五):堆的垃圾回收-垃圾回收算法

专栏导航 JVM工作原理与实战 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、垃圾回收算法介绍 1.垃圾回收算法的历史和分类 2.垃圾回收算法的评价标准 二、垃圾回收算法详解 1.标记清除算法 2.复制算法 3.标记整理算法 4.分代垃圾回收算法 总结 前言…

密码学的100个基本概念

密码学作为信息安全的基础&#xff0c;极为重要,本文分为上下两部分&#xff0c;总计10个章节&#xff0c;回顾了密码学的100个基本概念&#xff0c;供小伙伴们学习参考。本文将先介绍前五个章节的内容。 一、密码学历史 二、密码学基础 三、分组密码 四、序列密码 五、哈希…

生命在于折腾——WeChat机器人的研究和探索

一、前言 2022年&#xff0c;我玩过原神&#xff0c;当时看到了云崽的QQ机器人&#xff0c;很是感兴趣&#xff0c;支持各种插件&#xff0c;查询游戏内角色相关信息&#xff0c;当时我也自己写了几个插件&#xff0c;也看到很多大佬编写的好玩的插件&#xff0c;后来因为QQ不…

数据结构:搜索二叉树 | 红黑树 | 验证是否为红黑树

文章目录 1.红黑树的概述2.红黑树的性质3.红黑树的代码实现3.1.红黑树的节点定义3.2.红黑树的插入操作3.3.红黑树是否平衡 黑红树是一颗特殊的搜索二叉树&#xff0c;本文在前文的基础上&#xff0c;图解红黑树插入&#xff1a;前文 链接&#xff0c;完整对部分关键代码展示&a…

SG-8506CA 可编程晶体振荡器 (SPXO)

输出: LV-PECL频率范围: 50MHz ~ 800MHz电源电压: 2.5V to 3.3V外部尺寸规格: 7.0 5.0 1.5mm (8引脚)特性:用户指定一个起始频率, 7-bit I2C 地址:用户可编程: I2C 接口:基频的高频晶体:低抖动PLL技术应用:OTN, BTS, 测试设备 规格&#xff08;特征&#xff09; *1 这包括初…

Intel Atom + Artix-7 100T FPGA,CompactRIO单板控制器

模拟和数字I/O&#xff0c;RMC&#xff0c;DisplayPort&#xff0c;1.33 GHz双核CPU&#xff0c;1 GB DRAM&#xff0c;4 GB存储容量&#xff0c;Artix-7 100T FPGA&#xff0c;CompactRIO单板控制器 CompactRIO控制器是搭载了实时处理器和用户可编程FPGA的嵌入式控制器。其产…

Elasticsearch:聊天机器人、人工智能和人力资源:电信公司和企业组织的成功组合

作者&#xff1a;来自 Elastic Jrgen Obermann, Piotr Kobziakowski 让我们来谈谈大型企业人力资源领域中一些很酷且改变游戏规则的东西&#xff1a;生成式 AI 和 Elastic Stack 的绝佳组合。 现在&#xff0c;想象一下大型电信公司的典型人力资源部门 — 他们正在处理一百万件…

【Java IO】设计模式 (装饰者模式)

Java I/O 使用了装饰者模式来实现。 装饰者模式 请参考装饰者模式详解 装饰者(Decorator)和具体组件(ConcreteComponent)都继承自组件(Component)&#xff0c;具体组件的方法实现不需要依赖于其它对象&#xff0c;而装饰者组合了一个组件&#xff0c;这样它可以装饰其它装饰者…

022-安全开发-PHP应用留言板功能超全局变量数据库操作第三方插件引用

022-安全开发-PHP应用&留言板功能&超全局变量&数据库操作&第三方插件引用 #知识点&#xff1a; 1、PHP留言板前后端功能实现 2、数据库创建&架构&增删改查 3、内置超全局变量&HTML&JS混编 4、第三方应用插件&传参&对象调用 演示案例&a…

cad二次开发autolisp(二)

目录 一、选择集1.1 选择集的创建1.2 选择集的编辑1.3 操作选择集 二、命令行设置对话框2.1 设置图层2.2 加载线型2.3 设置字体样式2.4 设置标注样式&#xff08;了解即可&#xff09; 三、符号表3.1 简介3.2 符号表查找3.2 符号表删改增 一、选择集 定义&#xff1a;批量选择…

苹果眼镜(Vision Pro)的开发者指南(5)-主要工具

主要工具有:Xcode、Reality Composer Pro、Unity 第一部分:【用Xcode进行开发】 开始使用Xcode为visionOS进行开发。将向你展示如何在你现有的项目中添加一个visionOS目标,或者构建一个全新的应用,在Xcode预览中创建原型,以及从Reality Composer Pro中导入内容。还将分享…