机器学习实验3——支持向量机分类鸢尾花

文章目录

    • 🧡🧡实验内容🧡🧡
    • 🧡🧡数据预处理🧡🧡
      • 代码
      • 认识数据
      • 相关性分析
      • 径向可视化
      • 各个特征之间的关系图
    • 🧡🧡支持向量机SVM求解🧡🧡
      • 直觉理解:
      • 数学推导
      • 代码
      • 运行结果
    • 🧡🧡总结🧡🧡

🧡🧡实验内容🧡🧡

基于鸢尾花数据集,完成关于支持向量机的分类模型训练、测试与评估。

🧡🧡数据预处理🧡🧡

代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# ==================特征探索====================# ===认识数据===
iris = datasets.load_iris()
print("Feature names: {}".format(iris['feature_names']))
print("Target names: {}".format(iris["target_names"]))
print("target:\n{}".format(iris['target'])) # 0 代表setosa,1 代表versicolor,2 代表virginica。
print("shape of data: {}".format(iris['data'].shape))# ===转为df对象===
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
feature_df=df.drop('label',axis=1,inplace=False) # 取出特征
print(df)# ===相关性矩阵===
corr_matrix = feature_df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()# ===径向可视化===
ax = pd.plotting.radviz(df, 'label', colormap='brg')
ax.add_artist(plt.Circle((0,0), 1, color='r', fill = False))# ===各特征之间关系矩阵图===
# 设置颜色主题
g = sns.pairplot(data=df, palette="pastel", hue= 'label')

认识数据

属性:花萼长度,花萼宽度,花瓣长度,花瓣宽度
分类:Setosa,Versicolour,Virginica
在这里插入图片描述
在这里插入图片描述

相关性分析

如下图,可以直观看到花瓣宽度(Petal Width)和花瓣长度(Petal Length)存在很高的正相关性,且它们与花萼长度(Speal Length)也具有很高的正相关性,而花萼宽度(Speal Width)与其他三个属性特征的相关性均很弱。
在这里插入图片描述

径向可视化

用于观察每种类别花的四个特征之间的相对关系(线性大小关系)。
如下图,其中0、1、2分别对应Setosa,Versicolour,Virginica类别,可以直观看出:Setosa花的花萼宽度(Speal Width)和花萼长度(Speal Length)这两个特征相比其他两个特征花瓣宽度(Petal Width)和花瓣长度(Petal Length)具有区分性,而Versicolour,Virginica花的四个特征分布很相似,不好区分。
在这里插入图片描述

各个特征之间的关系图

从下图可以看出,Setosa花的花瓣宽度(Petal Width)和花瓣长度(Petal Length)的分布相比其他两类具有很好的区分性。
在这里插入图片描述

🧡🧡支持向量机SVM求解🧡🧡

直觉理解:

对于二维特征,如何区分图中不同的点
第一种思路:如下左图画一条线,但是是一个不太好的分割线
而换一种思路,如下右图,先找两个分类的决策边界(两边的虚线)之间的间隔区域,再取间隔区域的中间为分割线,这样能保证分割效果最佳。因此寻找最佳决策边界线(中间线)的问题可以转化为求解两类数据的最大间隔问题。
在这里插入图片描述在这里插入图片描述
因此将决策边界上下移动c,得到间隔的两个边界线,如下左图,此时这两个边界线称为支持向量,它们决定了间隔距离。如下右图,经过数学变换,可以得到最终要求的超平面表达式,即求解参数w、b即可
在这里插入图片描述在这里插入图片描述
除此之外,只考虑分类点的决策边界之间的距离的间隔,称为硬间隔,同时考虑距离和异常点损失(下图红线上方的黄点)的间隔,称为软间隔。
在这里插入图片描述

数学推导

某点到超平面的距离r:(几何间隔,可以代表分类正确的确信度)
在这里插入图片描述
目标超平面之间的间隔距离γ:
在这里插入图片描述
约束条件:点到超平面距离r >= 超平面间隔距离γ的一半:
在这里插入图片描述
则最终求解的函数表达式为:
在这里插入图片描述

但是以上函数表达式为非凸函数,因此要:

  1. 先转为凸函数
  2. 用拉格朗日乘子法和KKT条件求解对偶问题

1.转为凸函数:
在这里插入图片描述

2.用拉格朗日乘子法和KKT条件求解对偶问题
这个过程就涉及到高阶的数学知识了,我这里也不是很懂,只大概了解:
为什么要用拉格朗日乘子法:将不等式约束转换为等式约束。
整合成如下拉格朗日表达式:
在这里插入图片描述
依据对偶性,求解问题为:
在这里插入图片描述
先求解:在这里插入图片描述
根据KKT条件:对w、b求偏导可得:
在这里插入图片描述
代入L(w,b,a):在这里插入图片描述
再求解:在这里插入图片描述
在这里插入图片描述

3.利用SMO求解α、从而求解w、b
现在优化问题变成了如上的形式,但是它的规模正比于训练样本数m,当m很大时,会有很大开销,因此针对这个问题的特性,有更高效的优化算法,即序列最小优化(SMO)算法。
其大概思想是:先固定α以外的参数,然后对α求极值,在上述约束条件下,α可以由其他变量导出,这样,在参数初始化后,不断迭代,可以最终达到收敛。
通过SMO求得的w、b为:
在这里插入图片描述
则超平面的公式为:
在这里插入图片描述
最后根据超平面的符号,表达成分类决策函数即可:
在这里插入图片描述

代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScalerclass SMO:def __init__(self, X, y, C, kernel, tol, max_passes=10):self.X = X  # 样本特征 m*n m个样本 n个特征self.y = y  # 样本标签 m*1self.C = C  # 惩罚因子, 用于控制松弛变量的影响self.kernel = kernel  # 核函数self.tol = tol  # 容忍度self.max_passes = max_passes  # 最大迭代次数self.m, self.n = X.shapeself.alpha = np.zeros(self.m)self.b = 0self.w = np.zeros(self.n)# 计算核函数def K(self, i, j):if self.kernel == 'linear':return np.dot(self.X[i].T, self.X[j])elif self.kernel == 'rbf':gamma = 0.5return np.exp(-gamma * np.linalg.norm(self.X[i] - self.X[j]) ** 2)else:raise ValueError('Invalid kernel specified')def predict(self, X_test):pred = np.zeros_like(X_test[:, 0])pred = np.dot(X_test, self.w) + self.breturn np.sign(pred)def train(self):"""训练模型:return:"""passes = 0while passes < self.max_passes:num_changed_alphas = 0for i in range(self.m):# 计算E_i, E_i = f(x_i) - y_i, f(x_i) = w^T * x_i + b# 计算误差E_iE_i = 0for ii in range(self.m):E_i += self.alpha[ii] * self.y[ii] * self.K(ii, i)E_i += self.b - self.y[i]# 检验样本x_i是否满足KKT条件if (self.y[i] * E_i < -self.tol and self.alpha[i] < self.C) or (self.y[i] * E_i > self.tol and self.alpha[i] > 0):# 随机选择样本x_jj = np.random.choice(list(range(i)) + list(range(i + 1, self.m)), size=1)[0]# 计算E_j, E_j = f(x_j) - y_j, f(x_j) = w^T * x_j + b# E_j用于检验样本x_j是否满足KKT条件E_j = 0for jj in range(self.m):E_j += self.alpha[jj] * self.y[jj] * self.K(jj, j)E_j += self.b - self.y[j]alpha_i_old = self.alpha[i].copy()alpha_j_old = self.alpha[j].copy()# L和H用于将alpha[j]调整到[0, C]之间if self.y[i] != self.y[j]:L = max(0, self.alpha[j] - self.alpha[i])H = min(self.C, self.C + self.alpha[j] - self.alpha[i])else:L = max(0, self.alpha[i] + self.alpha[j] - self.C)H = min(self.C, self.alpha[i] + self.alpha[j])# 如果L == H,则不需要更新alpha[j]if L == H:continue# eta: alpha[j]的最优修改量eta = 2 * self.K(i, j) - self.K(i, i) - self.K(j, j)# 如果eta >= 0, 则不需要更新alpha[j]if eta >= 0:continue# 更新alpha[j]self.alpha[j] -= (self.y[j] * (E_i - E_j)) / eta# 根据取值范围修剪alpha[j]self.alpha[j] = np.clip(self.alpha[j], L, H)# 检查alpha[j]是否只有轻微改变,如果是则退出for循环if abs(self.alpha[j] - alpha_j_old) < 1e-5:continue# 更新alpha[i]self.alpha[i] += self.y[i] * self.y[j] * (alpha_j_old - self.alpha[j])# 更新b1和b2b1 = self.b - E_i - self.y[i] * (self.alpha[i] - alpha_i_old) * self.K(i, i) \- self.y[j] * (self.alpha[j] - alpha_j_old) * self.K(i, j)b2 = self.b - E_j - self.y[i] * (self.alpha[i] - alpha_i_old) * self.K(i, j) \- self.y[j] * (self.alpha[j] - alpha_j_old) * self.K(j, j)# 根据b1和b2更新bif 0 < self.alpha[i] and self.alpha[i] < self.C:self.b = b1elif 0 < self.alpha[j] and self.alpha[j] < self.C:self.b = b2else:self.b = (b1 + b2) / 2num_changed_alphas += 1if num_changed_alphas == 0:passes += 1else:passes = 0# 提取支持向量和对应的参数idx = self.alpha > 0  # 支持向量的索引# SVs = X[idx]selected_idx = np.where(idx)[0]SVs = self.X[selected_idx]SV_labels = self.y[selected_idx]SV_alphas = self.alpha[selected_idx]# 计算权重向量和截距self.w = np.sum(SV_alphas[:, None] * SV_labels[:, None] * SVs, axis=0)self.b = np.mean(SV_labels - np.dot(SVs, self.w))print("w", self.w)print("b", self.b)def score(self, X, y):predict = self.predict(X)print("predict", predict)print("target", y)return np.mean(predict == y)# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
y[y != 0] = -1
y[y == 0] = 1 # 分成两类# 为了方便可视化,只取前两个特征
X2 = X[:,:2]
# # 分别画出类别 0 和 1 的点
plt.scatter(X2[y == 1, 0], X2[y == 1, 1], color='red',label="class 1")
plt.scatter(X2[y == -1, 0], X2[y == -1, 1], color='blue',label="class -1")
plt.xlabel("Speal Width")
plt.ylabel("Speal Length")
plt.legend()
plt.show()# 数据预处理,将特征进行标准化,并将数据划分为训练集和测试集
scaler = StandardScaler()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3706)
X_train_std = scaler.fit_transform(X_train)# 创建SVM对象并训练模型
svm = SMO(X_train_std, y_train, C=0.6, kernel='rbf', tol=0.001)
svm.train()# 预测测试集的结果并计算准确率
X_test_std = scaler.transform(X_test)
accuracy = svm.score(X_test_std, y_test)
print('正确率: {:.2%}'.format(accuracy))from sklearn.metrics import confusion_matrix, roc_curve, auc
y_pred=svm.predict(X_test_std)# 绘制混淆矩阵
def cal_ConfusialMatrix(y_true_labels, y_pred_labels):cm = np.zeros((2, 2))y_true_labels = [0 if x == -1 else x for x in y_true_labels]y_pred_labels = [0 if x == -1 else x for x in y_pred_labels]for i in range(len(y_true_labels)):cm[ y_true_labels[i], y_pred_labels[i] ] += 1plt.figure(figsize=(8, 6))sns.heatmap(cm, annot=True, fmt='g', cmap='Blues', xticklabels=['Predicted Negative', 'Predicted Positive'], yticklabels=['Actual Negative', 'Actual Positive'])plt.xlabel('Predicted label')plt.ylabel('True label')plt.title('Confusion Matrix')plt.show()y_pred=[int(x) for x in y_pred]
y_test=[int(x) for x in y_test]
cal_ConfusialMatrix(y_test, y_pred)

运行结果

由于鸢尾花为三分类,为了简化实验,这里先把setosa定义为1类(+1),versicolor、virginica组合定义为1类(-1)。
做出其对于sepal width和sepal length的分布图,可以看到,训练样本应该是线性可分的。
在这里插入图片描述

按照训练集:测试集=8:2的比例进行训练,之后进行测试集分类结果如下:

线性核:
在这里插入图片描述
在这里插入图片描述

高斯核:
在这里插入图片描述
在这里插入图片描述

🧡🧡总结🧡🧡

实验结果:
当使用的核函数为线性核时,准确率能达到100%,而使用高斯核时,准确率降低到96.67%(其实从混淆矩阵可以看到,只分类错误1个),且运行时间相对长很多。

分析原因:
线性核适用于数据集具有线性可分性的情况,即类别之间可以通过一条直线进行划分。在这种情况下,线性核可以提供较好的分类性能,并且计算效率较高。
高斯核可以更好地处理非线性问题。高斯核可以将输入空间映射到一个更高维度的特征空间,从而使得数据在新的特征空间中更容易被线性分割。但是,高斯核也有其缺点:在使用高斯核时,需要调整的超参数较多,如 gamma 参数和正则化参数 C,不正确的参数选择可能导致过拟合或欠拟合的问题。此外,高斯核计算复杂度较高,需要计算每个样本与其他样本之间的相似度,因此在数据集上的训练和预测时间可能较长。
因此综合分析,本实验中鸢尾花的特征为线性,因此使用线性核效果更佳。同时高斯核对参数比较敏感,实验中对于高斯核的参数选择可能也不够恰当。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/643211.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Parade Series - Android Studio

硬件支持 CPU i7 RAM 16Gb -------------- ------- Java 3Gb Android 33GbJava Enviroment C:\ ├─ Java │ ├─ jdk1.8.0_181 │ ├─ jre1.8.0_181 │ ├─ maven-3.8.5 │ └─ gradle-6.5 └─ Cache├─ gr…

世微AP2915宽电压无MOS管切换双色灯性价比方案

1&#xff1a;产品描述 AP2915 是一款可以一路灯串切换两路灯串的降压恒流驱动器,高效率、外围简单、内置功率管&#xff0c;适用于 5-100V 输入的高精度降压 LED 恒流驱动芯片。内置功率管输出功率可达 12W&#xff0c;电流 1.2A。AP2915 一路灯亮切换两路灯亮&#xff0c;其…

【第十五课】数据结构:堆 (“堆”的介绍+主要操作 / acwing-838堆排序 / c++代码 )

目录 关于堆的一些知识的回顾 数据结构&#xff1a;堆的特点 "down" 和 "up"&#xff1a;维护堆的性质 down up 数据结构&#xff1a;堆的主要操作 acwing-838堆排序 代码如下 时间复杂度分析 确实是在写的过程中频繁回顾了很多关于树的知识&…

使用ElEment组件实现vue表单校验空值

1.绑定表单组件数组rules 2.在data域中设定组件rules 3.设定调用方法函数 提交校验 取消&#xff1a; 测试页面 提交空值 失去焦点 取消重置 提交后重置

Studio One 6 mac 6.5.2 激活版 数字音乐编曲创作

PreSonus Studio One是PreSonus出品的一款功能强大的音乐创作软件。主要为用户提供音乐创作、录音、编辑、制作等功能。它可以让你创造音乐&#xff0c;无限的轨道&#xff0c;无限的MIDI和乐器轨道&#xff0c;虚拟乐器和效果通道&#xff0c;这些都是强大和完美的。 软件下载…

【Maven】-- 打包添加时间戳的两种方法

一、需求 在执行 mvn clean package -Dmaven.test.skiptrue 后&#xff0c;生成的 jar 包带有自定义系统时间。 二、实现 方法一&#xff1a;使用自带属性&#xff08;不推荐&#xff09; 使用系统时间戳&#xff0c;但有一个问题&#xff0c;就是默认使用 UTC0 的时区。举例…

单片机11-13

目录 蜂鸣器 蜂鸣器播放按键提示音 蜂鸣器播放音乐 AT24C02&#xff08;IIC&#xff09;总线 AT24C02数据存储 AT24C02秒表&#xff08;定时器扫描按键&#xff09; DS18B20温度传感器&#xff08;单总线&#xff09; 温度显示 温度报警器 蜂鸣器 蜂鸣器播放按键提示音…

一款相对比较强大的国产ARM单片机HC32F4A0

已经用了3年的HC32F4A0&#xff0c;已经对它比较熟悉了&#xff0c;与STM32相比它的外设使用这些的确是挺大大&#xff0c;不像GD32一类的单片机很多都能兼容STM32。用久了之后就更喜欢用HC32F4A0&#xff0c;功能强大&#xff0c;外设使用灵活&#xff0c;用点向FPGA靠拢的感觉…

AI+量化03_股票数据获取

文章目录 思维导图问答之纯小白 vs GPT4 目标: 掌握量化金融知识、使用Python进行量化开发 背景&#xff1a;纯小白 参考资料&#xff1a;https://github.com/datawhalechina/whale-quant 本章是学习了股票数据的获取&#xff1a; 理论层面&#xff1a;包括股票数据的分类和常…

【AIGC】CLIP

CLIP的基本原理 对比学习&#xff1a; Clip使用对比学习来训练模型。对比学习的目标是通过将正样本&#xff08;相似的图像和文本对&#xff09;与负样本&#xff08;不相似的图像和文本对&#xff09;进行比较&#xff0c;从而使模型学会区分不同样本之间的差异。这有助于模型…

自然语言处理--基于HMM+维特比算法的词性标注

自然语言处理作业2--基于HMM维特比算法的词性标注 一、理论描述 词性标注是一种自然语言处理技术&#xff0c;用于识别文本中每个词的词性&#xff0c;例如名词、动词、形容词等&#xff1b; 词性标注也被称为语法标注或词类消疑&#xff0c;是语料库语言学中将语料库内单词…

【其他-闲谈】关于博客排行榜

今天在学习内核驱动&#xff0c;有个常量不知道什么意思&#xff0c;然后在一篇博客上找到了答案——GFP_KERNEL的作用 偶然注意到作者排行50&#xff0c;然后往下看了看&#xff0c;想知道为什么他排行这么靠前&#xff0c;看这文章数量&#xff0c;估摸着一天一篇&#xff0c…

浪花 - 查询队伍列表

一、接口设计 1. 请求参数&#xff1a;封装 TeamQuery package com.example.usercenter.model.dto;import com.example.usercenter.common.PageRequest; import lombok.Data;/*** author 乐小鑫* version 1.0* Date 2024-01-22-20:14*/ Data public class TeamQuery extends …

Stable Diffusion学习

参考 Stable Diffusion原理详解_stable diffusion csdn-CSDN博客 Stable Diffusion是stability.ai开源的图像生成模型&#xff0c;可以说Stable Diffusion的发布将AI图像生成提高到了全新高度&#xff0c;其效果和影响不亚于Open AI发布ChatGPT。 图像生成的发展 在Stable D…

【RT-DETR有效改进】轻量化ConvNeXtV2全卷积掩码自编码器网络

前言 大家好&#xff0c;我是Snu77&#xff0c;这里是RT-DETR有效涨点专栏。 本专栏的内容为根据ultralytics版本的RT-DETR进行改进&#xff0c;内容持续更新&#xff0c;每周更新文章数量3-10篇。 专栏以ResNet18、ResNet50为基础修改版本&#xff0c;同时修改内容也支持Re…

解决docker desktop 登录不上账号的问题

一、背景 点击“Sign in”&#xff0c;一直卡在Verifying credentials...&#xff0c;重试也没用。 二、解决办法 1、macOS下载并安装Proxifier 2、配置Proxifier 配置Proxies 配置rule 其中的Applications填&#xff1a;"Docker.app"; "Docker"; com.…

复合机器人颠覆传统上下料,实现高效精准生产

在追求高效、精准生产的现代制造业中&#xff0c;传统的上下料方式已经无法满足企业的需求。复合机器人的出现&#xff0c;为制造业带来了革命性的变革。它不仅提高了生产效率&#xff0c;降低了生产成本&#xff0c;还为企业创造了更大的竞争优势。复合机器人的广泛应用&#…

【复现】万户ezoffice协同管理平台 SQL注入漏洞_26

目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一&#xff1a; 四.修复建议&#xff1a; 五. 搜索语法&#xff1a; 六.免责声明 一.概述 万户ezOFFICE协同管理平台分为企业版和政务版。 解决方案由五大应用、两个支撑平台组成&#xff0c;分别为知识管理、工作流程、沟…

小新22-IAP,24-IAP,27-IAP(F0GG,F0GH,F0GJ)原厂Win11.22H2系统

lenovo联想小新22寸,24寸,27寸IAP原装出厂Windows11系统镜像还原包&#xff0c;恢复出厂开箱状态 适用型号&#xff1a; 联想小新27-IAP(F0GJ),小新24-IAP(F0GH),小新22-IAP(F0GG) IdeaCentre AIO 3 22IAP7,IdeaCentre AIO 3 24IAP7,IdeaCentre AIO 3 27IAP7 链接&#xff1…

网络协议与攻击模拟_06攻击模拟SYN Flood

一、SYN Flood原理 在TCP三次握手过程中&#xff0c; 客户端发送一个SYN包给服务器服务端接收到SYN包后&#xff0c;会回复SYNACK包给客户端&#xff0c;然后等待客户端回复ACK包。但此时客户端并不会回复ACK包&#xff0c;所以服务端就只能一直等待直到超时。服务端超时后会…