【分布式技术】消息队列Kafka

目录

一、Kafka概述

二、消息队列Kafka的好处

三、消息队列Kafka的两种模式

四、Kafka

1、Kafka 定义

2、Kafka 简介

3、Kafka 的特性

五、Kafka的系统架构

六、实操部署Kafka集群

 步骤一:在每一个zookeeper节点上完成kafka部署

​编辑

步骤二:传给其他节点

步骤三:启动3个节点

kafka管理topic命令

 创建topic

查看有哪些topic

查看topic的详细信息

修改topic的分区数量

删除topic

生产者推送数据

消费者拉取kafka的数据

七、数据可靠性保证

八、数据一致性问题

九、ack 应答机制

十、实操Filebeat+Kafka+ELK部署

步骤一:修改filebeat节点的配置文件

步骤二:添加logstash一个conf文件

步骤三:启动一下,验证

总结:排错思路


一、Kafka概述

主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。
我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。

二、消息队列Kafka的好处

(1)解耦
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

(2)可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

(3)缓冲
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

(4)灵活性 & 峰值处理能力
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

(5)异步通信
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

三、消息队列Kafka的两种模式

(1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。

(2)发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)
消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。
发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。

四、Kafka

1、Kafka 定义

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据领域的实时计算以及日志收集。

2、Kafka 简介

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,
Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。

3、Kafka 的特性

●高吞吐量、低延迟
Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

●可扩展性
kafka 集群支持热扩展

●持久性、可靠性
消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

●容错性
允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)

●高并发
支持数千个客户端同时读写

五、Kafka的系统架构

(1)Broker
一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。

(2)Topic
可以理解为一个队列,生产者和消费者面向的都是一个 topic。
类似于数据库的表名或者 ES 的 index
物理上不同 topic 的消息分开存储

(3)Partition
为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。

每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。
##Partation 数据路由规则:
1.指定了 patition,则直接使用;
2.未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition;
3.patition 和 key 都未指定,使用轮询选出一个 patition。

每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。

每个 partition 中的数据使用多个 segment 文件存储。

如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。

●broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
●如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
●如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。

//分区的原因
●方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
●可以提高并发,因为可以以Partition为单位读写了。

(4)Replica
副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。

(5)Leader
每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。

(6)Follower
Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower。

(7)Producer
生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。

(8)Consumer
消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据。

(9)Consumer Group(CG)
消费者组,由多个 consumer 组成。
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。
将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
消费者组之间互不影响。

(10)offset 偏移量
可以唯一的标识一条消息。
偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)。

(11)Zookeeper
Kafka 通过 Zookeeper 来存储集群的 meta 信息。

由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。

也就是说,zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费。

六、实操部署Kafka集群

1.下载安装包
官方下载地址:http://kafka.apache.org/downloads.htmlcd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz2.安装 Kafka
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka//修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}vim server.properties
broker.id=0    ●21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
listeners=PLAINTEXT://192.168.20.12:9092    ●31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3    #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8         #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1    #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168    #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824    #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181    ●123行,配置连接Zookeeper集群地址//修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/binsource /etc/profile//配置 Zookeeper 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)echo "---------- Kafka 启动 ------------"${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)echo "---------- Kafka 停止 ------------"${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)$0 stop$0 start
;;
status)echo "---------- Kafka 状态 ------------"count=$(ps -ef | grep kafka | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thenecho "kafka is not running"elseecho "kafka is running"fi
;;
*)echo "Usage: $0 {start|stop|restart|status}"
esac//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka//分别启动 Kafka
service kafka start3.Kafka 命令行操作
//创建topic
kafka-topics.sh --create --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --replication-factor 2 --partitions 3 --topic test-------------------------------------------------------------------------------------
--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2 
--partitions:定义分区数 
--topic:定义 topic 名称
-------------------------------------------------------------------------------------//查看当前服务器中的所有 topic
kafka-topics.sh --list --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 //查看某个 topic 的详情
kafka-topics.sh  --describe --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 //发布消息
kafka-console-producer.sh --broker-list 192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092  --topic test//消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092 --topic test --from-beginning-------------------------------------------------------------------------------------
--from-beginning:会把主题中以往所有的数据都读取出来
-------------------------------------------------------------------------------------//修改分区数
kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181  --alter --topic test --partitions 6//删除 topic
kafka-topics.sh --delete --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181  --topic test

 步骤一:在每一个zookeeper节点上完成kafka部署

步骤二:传给其他节点

需要修改配置文件中的broker.id和listeners 

步骤三:启动3个节点

在config目录下,可以用脚本命令指定配置文件

kafka管理topic命令

 创建topic

[root@localhost config]# kafka-topics.sh --create --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --replication-factor 2 --partitions 3 --topic lxy
Created topic lxy.

 

查看有哪些topic

[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --list
lxy

 

查看topic的详细信息

[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --describe --topic lxy
Topic: lxy	TopicId: -FkKaSeYRJGZGuWE6UazxQ	PartitionCount: 3	ReplicationFactor: 2	Configs: Topic: lxy	Partition: 0	Leader: 1	Replicas: 1,2	Isr: 1,2Topic: lxy	Partition: 1	Leader: 2	Replicas: 2,0	Isr: 2,0Topic: lxy	Partition: 2	Leader: 0	Replicas: 0,1	Isr: 0,1

 

修改topic的分区数量

[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --alter --topic test --partitions 2

删除topic

[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --delete --topic test
Topic test is marked for deletion.
Note: This will have no impact if delete.topic.enable is not set to true.
[root@localhost config]# kafka-topics.sh --zookeeper 192.168.20.12:2181,192.168.20.15:2181,192.168.20.16:2181 --list
lxy

 

生产者推送数据

[root@localhost config]# kafka-console-producer.sh --broker-list 192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092 --topic lxy
>a
>b
>c
>d
>e
>f

消费者拉取kafka的数据

[root@localhost config]# kafka-console-consumer.sh --bootstrap-server 192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092 --topic lxy --from-beginning
a
b
d
f
c
e

七、数据可靠性保证

为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后, 都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。

八、数据一致性问题

LEO:指的是每个副本最大的 offset; 
HW:指的是消费者能见到的最大的 offset,所有副本中最小的 LEO。

(1)follower 故障 
follower 发生故障后会被临时踢出 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合),待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。

(2)leader 故障 
leader 发生故障之后,会从 ISR 中选出一个新的 leader, 之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader 同步数据。

注:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

九、ack 应答机制

对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡选择。

当 producer 向 leader 发送数据时,可以通过 request.required.acks 参数来设置数据可靠性的级别:
●0:这意味着producer无需等待来自broker的确认而继续发送下一批消息。这种情况下数据传输效率最高,但是数据可靠性确是最低的。当broker故障时有可能丢失数据。

●1(默认配置):这意味着producer在ISR中的leader已成功收到的数据并得到确认后发送下一条message。如果在follower同步成功之前leader故障,那么将会丢失数据。

●-1(或者是all):producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成可靠性最高。但是如果在 follower 同步完成后,broker 发送ack 之前,leader 发生故障,那么会造成数据重复。

三种机制性能依次递减,数据可靠性依次递增。

注:在 0.11 版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。在 0.11 及以后版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据, Server 端都只会持久化一条。

十、实操Filebeat+Kafka+ELK部署

步骤一:修改filebeat节点的配置文件

部署 Filebeat 
cd /usr/local/filebeatvim filebeat.yml
filebeat.prospectors:
- type: logenabled: truepaths:- /var/log/nginx/access_logtags: ["nginx_access"]- type: logenabled: truepaths:- /var/log/nginx/error_logtags: ["nginx_error"]......
#添加输出到 Kafka 的配置
output.kafka:enabled: truehosts: ["192.168.20.12:9092","192.168.20.15:9092","192.168.20.16:9092"]    #指定 Kafka 集群配置topic: "nginx_log"    #指定 Kafka 的 topic#启动 filebeat
./filebeat -e -c filebeat.yml

步骤二:添加logstash一个conf文件

 

[root@nginx-test conf.d]#cat kafka.conf 
input{kafka {bootstrap_servers => "192.168.20.12:9092,192.168.20.15:9092,192.168.20.16:9092"topics  => "nginx_log"type => "nginx_kafka"codec => "json"auto_offset_reset => "latest"decorate_events => true}
}#filter{}output{if "nginx_access" in [tags] {elasticsearch {hosts => ["192.168.20.8:9200","192.168.20.18:9200"]index => "nginx_access-%{+yyyy.MM.dd}"}}if "nginx_error" in [tags] {elasticsearch {hosts => ["192.168.20.8:9200","192.168.20.18:9200"]index => "nginx_error-%{+yyyy.MM.dd}"}}stdout { codec => rubydebug }
}

步骤三:启动一下,验证

 

总结:排错思路

1、ES节点是否都正常 使用netstat -natp|grep java 查看9200和9300是否开启

2、filebeat作为生产者将数据推送到kafka,查看kafka中的topic是否有生成

3、在logstash中添加stdout输出,如果屏幕有内容,那么表示kafka与logstash对接成功了

4、filebeat、logstash的配置多次检查

5、环境问题,比如安全机制、防火墙等

6、如果是多次实验使用相同的nginx日志,可以删除/usr/share/logstash/data的.lock隐藏文件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/642666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【GitHub项目推荐--微软开源的课程(Web开发课程/机器学习课程/物联网课程/数据科学课程)】【转载】

微软在 GitHub 开源了四大课程,面向计算机专业或者入门编程的同学。分别是 Web 开发课程、机器学习课程、物联网课程和数据分析课程。 四大课程在 GitHub 上共斩获 90K 的Star,每一课程包含 20 多小节,完成课程大约需要 12 周。每小节除了视…

如何解决Xshell 连接不上虚拟机Ubuntu?

一、 在终端输入 sudo apt-get install openssh-server 二、 执行如下命令 sudo apt-get install ssh 三、 开启 ssh-server,输入密码 service ssh start 四、 验证,输入 ps -e|grep ssh,看到sshd成功 ps -e|grep ssh五、 连接

【Linux编辑器-vim使用】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 一、vim的基本概念 二、vim的基本操作 分屏操作: 三、vim正常(命令)模式命令集 四、vim末行(底行)模…

【经验分享】MAC系统安装R和Rstudio(保姆级教程)安装下载只需5min

最近换了Macbook的Air电脑,自然要换很多新软件啦,首先需要安装的就是R和Rstudio啦,网上的教程很多很繁琐,为此我特意总结了最简单实用的安装方式: 一、先R后Rstudio 二、R下载 下载网址:https://cran.r-project.org …

shell脚本基础演练

简介 Shell脚本是一种用于自动化执行一系列命令的脚本语言。在Unix和类Unix系统中,常见的Shell包括Bash、Zsh、Sh等。下面我将简要讲解Shell脚本的基本结构和一些常用写法,并附上一些标准的例子。 基础示例 基本结构 #!/bin/bash # 注释: 这是一个简…

什么是ORM思想?

1. ORM概念 ORM(Object Relational Mapping)对象关系映射模式,是一种技术,解决了面向对象与关系型数据库存互不匹配的现象。 ORM在业务逻辑层和数据库层之间充当了桥梁的作用。 2. ORM由来 在软件开发的过程中,通常…

力扣279. 完全平方数

动态规划 思路&#xff1a; 假设 dp[i] 为最少组成数 i 的平方数个数&#xff1b;则其上一个状态为 dp[i - j^2] 1&#xff0c;1 为 j^2&#xff1a; 即 i 的最少完全平方数 i - j^2 的最少完全平方数 1&#xff0c;其中 j^2 < i 为最接近 i 的平方数&#xff1b;初始值…

云计算管理-linux

1.权限 基本权限与归属 访问权限 读取&#xff1a;允许查看内容-read r 写入&#xff1a;允许修改内容-write w 可执行&#xff1a;允许运行和切换-excute x 对于文本文件&#xff1a; r读取权限&#xff1a;cat、less、grep、head、tail w写入权…

【BIAI】Lecture 6 - Somatosensory systems

Lecture 6- Somatosensory systems 专业术语 somatosensory system 体感系统 Thermoreceptors 温度感受器 Photoreceptors 光感受器 Chemoreceptoprs 化学感受器 hairy skin 毛发皮肤 glabrous skin 光滑皮肤 sensory receptors 感觉受体 dermal 真皮的 epidermal 表皮的 axon…

PSIM仿真DSP28335ADC功能并使用SCI串口模块输出曲线

在使用PSIM 2022 软件仿真DSP28335单片机时&#xff0c;发现里面还有SCI串口打印模块&#xff0c;在仿真软件里面可以看到串口数据&#xff0c;但是将代码下载到单片机上之后&#xff0c;使用串口助手却看不到任何数据&#xff0c;经过一番探索终于发现&#xff0c;串口不是这样…

C语言或C++通过IShellLinkA创建或解析lnk快捷方式(使用char字符数组)

本例程用到的COM接口有IShellLinkA和IPersistFile。 请注意因为函数参数的类型不为BSTR&#xff0c;所以这两个接口可直接传char *或wchar_t *字符串&#xff0c;不需要提前转化为BSTR类型。 C语言的写法&#xff1a; /* 这个程序只能在C编译器下编译成功, 请确保源文件的扩展…

Linux基本常用命令大全(一)

一、基本命令 1.1 关机和重启 关机 shutdown -h now 立刻关机 shutdown -h 5 5分钟后关机 poweroff 立刻关机 重启 shutdown -r now 立刻重启 shutdown -r 5 5分钟后重启 reboot 立刻重启 1.2 帮助命令 –help命令 shutdown --help&#xff1a; ifconfig --help&#xff1a…

Spring Boot的创建和使用

Spring的诞生是为了简化Java程序开发的&#xff0c;而Spring Boot的诞生是为了简化Spring程序开发的。 目录 Spring Boot 的优点 Spring Boot 项目创建 Spring Boot 目录介绍 Spring Boot 运行 Spring Boot 的优点 快速集成框架&#xff0c;Spring Boot 提供了启动添加依赖…

Java毕业设计-基于ssm的学生社团活动管理系统-第82期

获取源码资料&#xff0c;请移步从戎源码网&#xff1a;从戎源码网_专业的计算机毕业设计网站 项目介绍 基于ssm的学生社团活动管理系统&#xff1a;前端 jsp、jquery、ajax&#xff0c;后端 springmvc、spring、mybaties&#xff0c;角色分为管理员、学生、社团、用户&#…

K8s知识点总结_part2

为什么我们会需要 Pod&#xff1f; 容器的本质是一种特殊的进程&#xff0c;如果映射到系统中&#xff0c;容器镜像就是这个系统里的“.exe”安装包。 那么 Kubernetes 呢&#xff1f;Kubernetes 就是操作系统 在一个真正的操作系统里&#xff0c;进程并不是“孤苦伶仃”地独…

Java SE:面向对象(下)

1. static关键字 静态区的特点&#xff1a;静态区里面的每一样东西都是唯一有且仅有一个的&#xff0c;如此时str1 "abc"即此时静态区里面已经创建了字符串abc并将abc地址赋给str1&#xff0c;后面在进行赋值也不会在静态区开辟一串新的"abc" 1.1 static修…

【超简版,代码可用!】【0基础Python爬虫入门——下载歌曲/视频】

安装第三方模块— requests 完成图片操作后输入&#xff1a;pip install requests 科普&#xff1a; get:公开数据 post:加密 &#xff0c;个人信息 进入某音乐网页&#xff0c;打开开发者工具F12 选择网络&#xff0c;再选择—>媒体——>获取URL【先完成刷新页面】 科…

庞加莱猜想与品牌营销:网络集成化生态系统的力量

在数学界&#xff0c;庞加莱猜想一直是一个令人着迷的问题。而今&#xff0c;这一猜想与品牌营销产生了奇妙的联系。本文将结合庞加莱猜想&#xff0c;探讨品牌如何通过网络集成化生态系统实现低成本的市场推广&#xff0c;唤醒需求侧需求并扩展用户圈层。 首先&#xff0c;庞…

软考14-上午题-编译、解释程序翻译阶段

一、编译、解释程序【回顾】 目的&#xff1a;高级程序设计语言&#xff08;汇编语言、高级语言&#xff09;—【翻译】—>机器语言 1-1、编译方式 将高级语言书写的源程序——>目标程序&#xff08;汇编语言、机器语言&#xff09; 包含的工作阶段&#xff1a;词法分…

计算机中丢失VCRUNTIME140_1.dll

去微软官网下载安装 Visual C 下载地址&#xff1a;Latest supported Visual C Redistributable downloads | Microsoft Learn https://aka.ms/vs/17/release/vc_redist.x64.exe Visual Studio 2015、2017、2019 和 2022 下表列出了 Visual Studio 2015、2017、2019 和 2022 …