MNIST 数据集详析:使用残差网络RESNET识别手写数字(文末送书)

MNIST 数据集已经是一个几乎每个初学者都会接触的数据集, 很多实验、很多模型都会以MNIST 数据集作为训练对象, 不过有些人可能对它还不是很了解, 那么今天我们一起来学习一下MNIST 数据集,同时构建残差网络来识别手写数字。

1.MNIST 介绍

MNIST手写数字数据库具有60,000个示例的训练集和10,000个示例的测试集,MNIST的图像,每张图片是包含28 像素× 28 像素的灰度图像(1 通道),各个像素的取值在0 到255 之间。每张图片都由一个28 ×28 的矩阵表示,每张图片都由一个784 维的向量表示(28*28=784)。
在这里插入图片描述

Size: 28×28 灰度手写数字图像
Num: 训练集 60000 和 测试集 10000,一共70000张图片
Classes: 0,1,2,3,4,5,6,7,8,9

在这里插入图片描述
MNIST 数据集来自美国国家标准与技术研究所, 训练集 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自工作人员. 测试集也是同样比例的手写数字数据.

MNIST 数据集包含了四个部分:

  • Training set images: train-images-idx3-ubyte.gz (9.9 MB, 解压后 47 MB, 包含 60,000 个样本)
  • Training set labels: train-labels-idx1-ubyte.gz (29 KB, 解压后 60 KB, 包含 60,000 个标签)
  • Test set images: t10k-images-idx3-ubyte.gz (1.6 MB, 解压后 7.8 MB, 包含 10,000 个样本)
  • Test set labels: t10k-labels-idx1-ubyte.gz (5KB, 解压后 10 KB, 包含 10,000 个标签)

在这里插入图片描述

训练集标签文件 :

在这里插入图片描述

训练集映像文件:

在这里插入图片描述
像素按行组织。像素值为 0 到 255。0 表示背景(白色),255 表示前景(黑色)。

测试集标签文件:

在这里插入图片描述

测试集映像文件:

在这里插入图片描述
像素按行组织。像素值为 0 到 255。0 表示背景(白色),255 表示前景(黑色)。

2.数据集读取

2.1官网下载MNIST 数据集

MNIST 数据集可在 http://yann.lecun.com/exdb/mnist/ 获取
注意:不要直接点连接,复制连接粘贴到新的浏览器标签页搜索,就不需要账号密码了!!!

2.2 博主分享

同时:博主已将MNIST公开数据集上传至百度网盘,大家可以直接下载学习:
链接: https://pan.baidu.com/s/1-rurbkWdv_veQD8QcQWcRw 提取码: 0213

2.3 直接下载

如果数据集没有下载,修改参数:download=True,直接去下载数据集:

from torchvision import datasets, transformstrain_data = datasets.MNIST(root="./MNIST",train=True,transform=transforms.ToTensor(),download=True)test_data = datasets.MNIST(root="./MNIST",train=False,transform=transforms.ToTensor(),download=True)print(train_data)
print(test_data)

如果出现这种错误:

SyntaxError: Non-UTF-8 code starting with \xca in fileD:\PycharmProjects\model-fuxian\data set\MNIST t.py on line 2, but noencoding declared; see http://python.org/dev/peps/pep-0263/ fordetails

大概率是你没加:# coding:gbk,为什么呢?由于 Python 默认使用 ASCII 编码来解析源代码,因此如果源文件中包含了非 ASCII 编码的字符(比如中文字符),那么解释器就可能会抛出 SyntaxError 异常。加上# -- coding: gbk --这样的注释语句可以告诉解释器当前源文件的字符编码格式是 GBK,从而避免源文件中文字符被错误地解析。

如果成功运行会出现这种结果,表示已经开始下载了:

在这里插入图片描述
输出结果:

Dataset MNIST
Number of datapoints: 60000
Root location: ./MNIST
Split: Train
StandardTransform
Transform: ToTensor()
Dataset MNIST
Number of datapoints: 10000
Root location: ./MNIST
Split: Test
StandardTransform
Transform: ToTensor()

3.数据集可视化

import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plttrain_data = datasets.MNIST(root="model-fuxian/data set/MNIST/MNIST/raw/MNIST",train=True,transform=transforms.ToTensor(),download=False)train_loader = DataLoader(dataset=train_data,batch_size=64,shuffle=True)for num, (image, label) in enumerate(train_loader):image_batch = torchvision.utils.make_grid(image, padding=2)plt.imshow(np.transpose(image_batch.numpy(), (1, 2, 0)), vmin=0, vmax=255)plt.show()print(label)

得到图片:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这是标签:

tensor([2, 1, 7, 7, 2, 4, 2, 2, 0, 1, 7, 1, 5, 7, 9, 0, 2, 7, 4, 7, 0, 2, 7, 1,6, 9, 1, 1, 1, 5, 4, 3, 8, 0, 1, 0, 1, 3, 8, 0, 1, 4, 5, 1, 8, 4, 7, 3,8, 3, 2, 2, 0, 0, 4, 0, 2, 9, 7, 1, 8, 3, 2, 3])
tensor([6, 6, 7, 2, 5, 4, 0, 3, 4, 6, 1, 4, 1, 9, 2, 2, 8, 7, 5, 7, 9, 6, 6, 7,1, 9, 9, 5, 5, 6, 9, 6, 8, 5, 5, 7, 8, 9, 8, 3, 1, 0, 1, 4, 6, 1, 8, 6,1, 4, 6, 7, 1, 9, 5, 4, 3, 4, 6, 1, 7, 3, 7, 6])
tensor([7, 1, 5, 1, 4, 0, 9, 2, 2, 0, 1, 5, 2, 3, 6, 4, 6, 9, 3, 3, 2, 8, 1, 5,8, 0, 1, 4, 5, 6, 2, 6, 4, 9, 2, 0, 7, 2, 0, 1, 2, 4, 4, 6, 5, 9, 1, 2,5, 3, 3, 8, 8, 3, 4, 5, 2, 6, 0, 0, 8, 7, 1, 7])

4.使用残差网络RESNET识别手写数字

残差网络:

残差网络(Residual Network,ResNet)是在神经网络模型中给非线性层增加直连边的方式来缓解梯度消失问题,从而使训练深度神经网络变得更加容易。在残差网络中,最基本的单位为残差单元。

算子ResBlock:

首先实现一个算子ResBlock来构建残差单元,其中定义了use_residual参数,用于在后续实验中控制是否使用残差连接:

class ResBlk(nn.Module):  # 定义Resnet Block模块"""resnet block"""def __init__(self, ch_in, ch_out, stride=1):  # 进入网络前先得知道传入层数和传出层数的设定""":param ch_in::param ch_out:"""super(ResBlk, self).__init__()  # 初始化# we add stride support for resbok, which is distinct from tutorials.# 根据resnet网络结构构建2个(block)块结构 第一层卷积 卷积核大小3*3,步长为1,边缘加1self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)# 将第一层卷积处理的信息通过BatchNorm2dself.bn1 = nn.BatchNorm2d(ch_out)# 第二块卷积接收第一块的输出,操作一样self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)self.bn2 = nn.BatchNorm2d(ch_out)# 确保输入维度等于输出维度self.extra = nn.Sequential()  # 先建一个空的extraif ch_out != ch_in:# [b, ch_in, h, w] => [b, ch_out, h, w]self.extra = nn.Sequential(nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),nn.BatchNorm2d(ch_out))def forward(self, x):  # 定义局部向前传播函数out = F.relu(self.bn1(self.conv1(x)))  # 对第一块卷积后的数据再经过relu操作out = self.bn2(self.conv2(out))  # 第二块卷积后的数据输出out = self.extra(x) + out  # 将x传入extra经过2块(block)输出后与原始值进行相加out = F.relu(out)  # 调用relureturn out

ResNet18结构及六个模块:

残差网络就是将很多个残差单元串联起来构成的一个非常深的网络。ResNet18 的网络结构如图所示:
在这里插入图片描述
其中为了便于理解,可以将ResNet18网络划分为6个模块:

第一模块:包含了一个步长为2,大小为7 × 7 7 \times 77×7的卷积层,卷积层的输出通道数为64,卷积层的输出经过批量归一化、ReLU激活函数的处理后,接了一个步长为2的3 × 3 3 \times 33×3的最大汇聚层;
第二模块:包含了两个残差单元,经过运算后,输出通道数为64,特征图的尺寸保持不变;
第三模块:包含了两个残差单元,经过运算后,输出通道数为128,特征图的尺寸缩小一半;
第四模块:包含了两个残差单元,经过运算后,输出通道数为256,特征图的尺寸缩小一半;
第五模块:包含了两个残差单元,经过运算后,输出通道数为512,特征图的尺寸缩小一半;
第六模块:包含了一个全局平均汇聚层,将特征图变为1 × 1 1 \times 11×1的大小,最终经过全连接层计算出最后的输出。

定义完整网络:

class ResNet18(nn.Module):  # 构建resnet18层def __init__(self):super(ResNet18, self).__init__()self.conv1 = nn.Sequential(  # 首先定义一个卷积层nn.Conv2d(1, 32, kernel_size=3, stride=3, padding=0),nn.BatchNorm2d(32))# followed 4 blocks 调用4次resnet网络结构,输出都是输入的2倍self.blk1 = ResBlk(32, 64, stride=1)self.blk2 = ResBlk(64, 128, stride=1)self.blk3 = ResBlk(128, 256, stride=1)self.blk4 = ResBlk(256, 256, stride=1)self.outlayer = nn.Linear(256 * 1 * 1, 10)  # 最后是全连接层def forward(self, x):  # 定义整个向前传播x = F.relu(self.conv1(x))  # 先经过第一层卷积x = self.blk1(x)  # 然后通过4次resnet网络结构x = self.blk2(x)x = self.blk3(x)x = self.blk4(x)x = F.adaptive_avg_pool2d(x, [1, 1])# print('after pool:', x.shape)x = x.view(x.size(0), -1)  # 平铺一维值x = self.outlayer(x)  # 全连接层return x

完整代码:

# coding=gbk
# 1.加载必要的库
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets,transforms
import argparse# 2.超参数
BATCH_SIZE = 32#每批处理的数据 一次性多少个
DEVICE  = torch.device("cuda")#使用GPU
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")#使用GPU
EPOCHS =4 #训练数据集的轮次
# 3.图像处理
pipeline = transforms.Compose([transforms.ToTensor(), #将图片转换为Tensor])# 4.下载,加载数据
from torch.utils.data import DataLoader#下载
train_set = datasets.MNIST("data",train=True,download=True,transform=pipeline)
test_set = datasets.MNIST("data",train=False,download=True,transform=pipeline)#加载 一次性加载BATCH_SIZE个打乱顺序的数据
train_loader = DataLoader(train_set,batch_size=BATCH_SIZE,shuffle=True)
test_loader = DataLoader(test_set,batch_size=BATCH_SIZE,shuffle=True)# 5.构建网络模型
class ResBlk(nn.Module):  # 定义Resnet Block模块"""resnet block"""def __init__(self, ch_in, ch_out, stride=1):  # 进入网络前先得知道传入层数和传出层数的设定""":param ch_in::param ch_out:"""super(ResBlk, self).__init__()  # 初始化# we add stride support for resbok, which is distinct from tutorials.# 根据resnet网络结构构建2个(block)块结构 第一层卷积 卷积核大小3*3,步长为1,边缘加1self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)# 将第一层卷积处理的信息通过BatchNorm2dself.bn1 = nn.BatchNorm2d(ch_out)# 第二块卷积接收第一块的输出,操作一样self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)self.bn2 = nn.BatchNorm2d(ch_out)# 确保输入维度等于输出维度self.extra = nn.Sequential()  # 先建一个空的extraif ch_out != ch_in:# [b, ch_in, h, w] => [b, ch_out, h, w]self.extra = nn.Sequential(nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),nn.BatchNorm2d(ch_out))def forward(self, x):  # 定义局部向前传播函数out = F.relu(self.bn1(self.conv1(x)))  # 对第一块卷积后的数据再经过relu操作out = self.bn2(self.conv2(out))  # 第二块卷积后的数据输出out = self.extra(x) + out  # 将x传入extra经过2块(block)输出后与原始值进行相加out = F.relu(out)  # 调用relureturn outclass ResNet18(nn.Module):  # 构建resnet18层def __init__(self):super(ResNet18, self).__init__()self.conv1 = nn.Sequential(  # 首先定义一个卷积层nn.Conv2d(1, 32, kernel_size=3, stride=3, padding=0),nn.BatchNorm2d(32))# followed 4 blocks 调用4次resnet网络结构,输出都是输入的2倍self.blk1 = ResBlk(32, 64, stride=1)self.blk2 = ResBlk(64, 128, stride=1)self.blk3 = ResBlk(128, 256, stride=1)self.blk4 = ResBlk(256, 256, stride=1)self.outlayer = nn.Linear(256 * 1 * 1, 10)  # 最后是全连接层def forward(self, x):  # 定义整个向前传播x = F.relu(self.conv1(x))  # 先经过第一层卷积x = self.blk1(x)  # 然后通过4次resnet网络结构x = self.blk2(x)x = self.blk3(x)x = self.blk4(x)x = F.adaptive_avg_pool2d(x, [1, 1])# print('after pool:', x.shape)x = x.view(x.size(0), -1)  # 平铺一维值x = self.outlayer(x)  # 全连接层return x
# 6.定义优化器
model = ResNet18().to(DEVICE)#创建模型并将模型加载到指定设备上optimizer = optim.Adam(model.parameters(),lr=0.001)#优化函数criterion = nn.CrossEntropyLoss()
# 7.训练
def train_model(model,device,train_loader,optimizer,epoch):# Training settingsparser = argparse.ArgumentParser(description='PyTorch MNIST Example')parser.add_argument('--batch-size', type=int, default=64, metavar='N',help='input batch size for training (default: 64)')parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',help='input batch size for testing (default: 1000)')parser.add_argument('--epochs', type=int, default=14, metavar='N',help='number of epochs to train (default: 14)')parser.add_argument('--lr', type=float, default=1.0, metavar='LR',help='learning rate (default: 1.0)')parser.add_argument('--gamma', type=float, default=0.7, metavar='M',help='Learning rate step gamma (default: 0.7)')parser.add_argument('--no-cuda', action='store_true', default=False,help='disables CUDA training')parser.add_argument('--dry-run', action='store_true', default=False,help='quickly check a single pass')parser.add_argument('--seed', type=int, default=1, metavar='S',help='random seed (default: 1)')parser.add_argument('--log-interval', type=int, default=10, metavar='N',help='how many batches to wait before logging training status')parser.add_argument('--save-model', action='store_true', default=False,help='For Saving the current Model')args = parser.parse_args()model.train()#模型训练for batch_index,(data ,target) in enumerate(train_loader):data,target = data.to(device),target.to(device)#部署到DEVICE上去optimizer.zero_grad()#梯度初始化为0output = model(data)#训练后的结果loss = criterion(output,target)#多分类计算损失loss.backward()#反向传播 得到参数的梯度值optimizer.step()#参数优化if batch_index % args.log_interval == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_index * len(data), len(train_loader.dataset),100. * batch_index / len(train_loader), loss.item()))if args.dry_run:break
# 8.测试
def test_model(model,device,text_loader):model.eval()#模型验证correct = 0.0#正确率global Accuracytext_loss = 0.0with torch.no_grad():#不会计算梯度,也不会进行反向传播for data,target in text_loader:data,target = data.to(device),target.to(device)#部署到device上output = model(data)#处理后的结果text_loss += criterion(output,target).item()#计算测试损失pred = output.argmax(dim=1)#找到概率最大的下标correct += pred.eq(target.view_as(pred)).sum().item()#累计正确的值text_loss /= len(test_loader.dataset)#损失和/加载的数据集的总数Accuracy = 100.0*correct / len(text_loader.dataset)print("Test__Average loss: {:4f},Accuracy: {:.3f}\n".format(text_loss,Accuracy))
# 9.调用for epoch in range(1,EPOCHS+1):train_model(model,DEVICE,train_loader,optimizer,epoch)test_model(model,DEVICE,test_loader)torch.save(model.state_dict(),'model.ckpt')

在这里插入图片描述

精确度

Test__Average loss: 0.000808,Accuracy: 99.150
最后可以发现准确度达到了99%还高,可以看出来残差网络识别手写数字的准确性还是很高的。
在这里插入图片描述
没有GPU的可以使用CPU,不过速度会大打折扣:DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu"),最好是可以使用GPU,这样速度会快很多: torch.device("cuda")#使用GPU

文末免费送书:C语言从入门到精通(第6版)

《C语言从入门到精通(第6版)》从初学者的角度出发,以通俗易懂的语言、丰富多彩的实例,详细介绍了使用C语言进行程序开发需要掌握的各方面知识。全书分为4篇,共20章,内容包括C语言概述、算法、数据类型、运算符与表达式、数据输入/输出、选择结构、循环控制、数组、函数、指针、结构体和共用体、位运算、预处理、文件、内存管理、网络套接字编程、单词背记闯关游戏、学生信息管理系统、单片机基础和GSM短信控制家庭防盗报警系统。书中所有知识都结合具体实例进行介绍,涉及的程序代码给出了详细的注释,读者可以轻松领会C语言程序开发的精髓,快速提高开发技能。

在这里插入图片描述

抽奖方式: 评论区随机抽取3位小伙伴免费送出!
参与方式: 关注博主、点赞、收藏、评论区评论“人生苦短,我用Python!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!)
活动截止时间: 2024-1-30 20:00:00
当当: 购买链接传送门
京东: 购买链接传送门

😄😄😄名单公布方式: 下期活动开始将在评论区和私信一并公布,中奖者请三天内提供信息😄😄😄

“软件开发视频大讲堂”丛书是清华社计算机专业基础类零售图书畅销品牌之一。
(1)2008—2023年,丛书累计修订7次,销售400万册,深受广大程序员喜爱。
(2)4本荣获“全行业优畅销书”奖,1本荣获清华社“专业畅销书”一等奖,多数品种在全国计算机零售图书排行榜排行中名列前茅。
(3)实用、易懂、资源丰富,被数百所高校选为专业课教材。
《C语言从入门到精通(第6版)》介绍主流开发环境Visual C 6.0、Visual Studio 2022和Dev C ,图书特点如下。

  1. 学通C语言只需要4步:基础知识→核心技术→高级应用→项目实战,符合认知规律。
  2. 204集同步教学微课 强化实战训练 在线答疑,夯实基础,精准,有效,速练,适合自学。
  3. 171个应用实例 118个编程训练 110个综合练习 3个项目案例,学习1小时,训练10小时,从入门到项目上线,真正成为C语言高手。
  4. 根据图书首页说明,扫描书中二维码,打开明日科技账号注册页面,填写注册信息后将自动获取C语言开发资源库一年(自注册之日起)的VIP使用权限。
    (1)技术资源库:323个技术要点,系统、全面,随时随地学习。
    (2)技巧资源库:300个开发技巧,快速扫除盲区,掌握更多实战技巧,精准避坑。
    (3)实例资源库:359个应用实例,含大量热点实例和关键实例,巩固编程技能。
    (4)项目资源库:19个实战项目,快速积累项目经验,总有一个你找工作会用到。
    (5)源码资源库:378项源代码详细分析,多读源码,快速成长。
    (6)视频资源库:451集学习视频,边看视频边学习,提升更快。
    (7)面试资源库:C语言企业面试真题,合理职业规划,快速就业。
    学会、用好C语言开发资源库,可在短时间内从小白晋升为一名软件工程师。
  5. 在线解答,高效学习。
    (1)关注清大文森学堂公众号,可获取本书的源代码、PPT课件、视频等资源。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641914.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

spring-framework6.x版本源码构建

6.x.修改gradle仓库构建 IDEA版本及gradle构建设置 在gradle指定仓库地址/wrapper/dists/找到与gradle wrapper相对应的gradle版本,在gradle的init.d/目录下新建init.gradle文件,内容如下: allprojects{repositories {mavenLocal()maven { …

中仕教育:选调生和考研可以一起准备吗?

研究生入学考试,是本科生们提升学历继续深造的主要途径。而选调生,是指通过考试选拔的优秀应届毕业生,经过锻炼后分配到各级工作。这两者作为大部分人选择的方向,发展前景都是比较好的。 考研和选调生可以一起准备吗? 是可以的…

python+ctypes:ctypes调用so库

之前接到一个任务就是用python调用so库,也就是python调用cso库,也是第一次做这个,而且要的还很急,导致我也很忙碌,很多之前做的事请都丢下了。下面就介绍了ctypes调用so的简单例子。 ctypes 是 Python 的外部函数库。…

[MySQL]关于表的增删改查

目录 1.插入 1.1单行数据全列插入 1.2多行插入,指定列插入 ​编辑2.查询 2.1全列查询 2.2指定列查询 3.3查询字段为表达式 2.4别名 ​编辑2.5去重 2.6排序 2.7条件查询 2.7.1基本查询: 2.7.2 AND 和OR 2.7.3范围查询 2.7.4模糊查询 2.7.5分页查询 limit …

vue3 中组合键实现换行

vue3 中组合键实现换行 需求背景 有一个聊天室功能,采用输入框的形式,输入完毕使用Enter,可以直接进行发送。使用一些组合键 比如 commandEnter / shiftEnter / alt Enter … 可以实现换行操作。但现实的情况是,原生 Enter 天然…

【JavaEE Spring】MyBatis 操作数据库(基础操作)

MyBatis 操作数据库 本节目标前⾔JDBC 操作⽰例回顾1. 什么是MyBatis?2. MyBatis⼊⻔2.1 准备⼯作2.1.1 创建⼯程2.1.2 数据准备 2.2 配置数据库连接字符串2.3 写持久层代码2.4 单元测试 3. MyBatis的基础操作3.1 打印⽇志3.2 参数传递3.3 增(Insert)3.4 删(Delete)3.5 改(Upd…

太赞了!微信自动回复法宝,让沟通更高效!

如今,微信已成为人们生活和工作中不可或缺的一部分。然而,对于一些有多个微信账号的人说,常常会因为微信号太多,消息太多没能及时回复,或是客户咨询的问题很多都差不多,每次都要复制粘贴很是麻烦。 要想一…

记录yolov8_obb训练自己的数据集

一.数据集制作 1.标注软件:roLabelImg roLabelImg是基于labelImg改进的,是用来标注为VOC格式的数据,但是在labelImg的基础上增加了能够使标注的框进行旋转的功能。 2.数据格式转换 2.1 xml转txt # 文件名称 :roxml_to_dota.p…

Leetcode—40.组合总和II【中等】

2023每日刷题&#xff08;七十七&#xff09; Leetcode—40.组合总和II 算法思想 实现代码 class Solution { public:vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {vector<vector<int>> ans;vector<int…

深度解析SD-WAN和混合WAN的网络方案区别

在企业网络的不断发展中&#xff0c;根据业务需要选择不同的广域网&#xff08;WAN&#xff09;解决方案显得至关重要。传统的基于传输控制协议/因特网协议&#xff08;TCP/IP&#xff09;的WAN是一种私有广域网&#xff0c;由企业网络和互联网服务提供商&#xff08;ISP&#…

python222网站实战(SpringBoot+SpringSecurity+MybatisPlus+thymeleaf+layui)-热门标签推荐显示实现

锋哥原创的SpringbootLayui python222网站实战&#xff1a; python222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火爆连载更新中... )_哔哩哔哩_bilibilipython222网站实战课程视频教程&#xff08;SpringBootPython爬虫实战&#xff09; ( 火…

Vue 动态组件与异步组件:深入理解与全面应用

聚沙成塔每天进步一点点 本文内容 ⭐ 专栏简介1. 动态组件实现原理&#xff1a;用法示例&#xff1a; 2. 异步组件实现原理&#xff1a;用法示例&#xff1a; 3. 异步组件的高级应用a. 异步组件的命名&#xff1a;b. 异步组件的加载状态管理&#xff1a; ⭐ 写在最后 ⭐ 专栏简…

element plus表格的表头和内容居中

文章目录 需求分析 需求 对于 element-plus 中的 table 进行表头和内容的居中显示 分析 单列的表头和内容居中 &#xff1a; 在对应的那一列加上align“center” 即可 <el-table-column prop"name" label"商品名称" align"center" />…

c++QT文件IO

1、QFileDialog文件对话框 与QMessageBox一样&#xff0c;QFileDialog也继承了QDialog类&#xff0c;直接使用静态成员函数弹窗。弹出的结果&#xff08;选择文件的路径&#xff09;通过返回值获取。 1&#xff09;获取一个打开或保存的文件路径 // 获取一个打开或保存的文件路…

Unity3D控制人物移动的多种方法

系列文章目录 unity知识点 文章目录 系列文章目录前言一、人物移动之键盘移动1-1、代码如下1-2、效果 二、人物移动之跟随鼠标点击移动2-1、代码如下2-2、效果 三、人物移动之刚体移动3-1、代码如下3-2、效果 四、人物移动之第一人称控制器移动4-1、代码如下4-2、效果 五、And…

从编程中思考:大脑的局部与全局模式(一)

郭靖正在帐篷中用Unity写代码&#xff0c;刚写完一段代码。欧阳锋从帐篷外走进来&#xff0c;正要说点什么&#xff0c;郭靖反应敏捷&#xff0c;转身反手一招神龙摆尾击出&#xff0c;将欧阳锋震出帐篷&#xff0c;灰溜溜逃跑。 using UnityEngine;public class LocalGlobalD…

Maven 综合案例

1. 项目需求和结构分析 需求案例&#xff1a;搭建一个电商平台项目&#xff0c;该平台包括用户服务、订单服务、通用工具模块等。 项目架构&#xff1a; 用户服务&#xff1a;负责处理用户相关的逻辑&#xff0c;例如用户信息的管理、用户注册、登录等。 spring-context 6.0.…

P1320 压缩技术(续集版)(C语言)

基本思路是&#xff1a; 1.读入字符串并计算n值 2.字符串连接&#xff08;要用到strcat&#xff09; 3.输出n值 4.计算字符数并输出 其中输出时第一个数字是0的个数&#xff0c;这个很容易被遗漏。 #include<stdio.h> #include<string.h> int main() {char a[…

centos 7.6 进入单用户模式

1、重启服务器&#xff0c;在选择内核界面使用上下箭头移动 2、选择内核并按“e” 将“RO”改成 rw ,删除 rhgb quiet 添加 init/bin/bash Ctrl X 进入单用户模式 为防止乱码&#xff0c;修改语言为英语 修改完密码建议输入&#xff1a;touch /.autorelabel 更新系统信…

imgaug库图像增强指南(34):揭秘【iaa.Clouds】——打造梦幻般的云朵效果

引言 在深度学习和计算机视觉的世界里&#xff0c;数据是模型训练的基石&#xff0c;其质量与数量直接影响着模型的性能。然而&#xff0c;获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此&#xff0c;数据增强技术应运而生&#xff0c;成为了解决这一问题的…