Yolov8不废话!参考手册!

Yolov8使用

yolo task=detect mode=train model=yolov8n.pt       args...classify    predict     yolov8n-cls.yaml args...segment     val         yolov8n-seg.yaml args...export                  yolov8n.pt       format=onnx args...

使用Ultralytics YOLO进行模型训练

* 如COCO、VOC、ImageNet等YOLOv8数据集在首次使用时会自动下载,即 `yolo train data=coco.yaml`

使用示例

姿态模型

from ultralytics import YOLO# 加载模型
model = YOLO('yolov8n-pose.yaml')  # 从YAML构建一个新模型
model = YOLO('model/yolov8n-pose.pt')  # 加载一个预训练模型(推荐用于训练)
model = YOLO('yolov8n-pose.yaml').load('yolov8n-pose.pt')  # 从YAML构建并传输权重# 训练模型
results = model.train(data='coco8-pose.yaml', epochs=100, imgsz=640)
# 从YAML构建一个新模型并从头开始训练
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640# 从一个预训练的*.pt模型开始训练
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640# 从YAML构建一个新模型,传输预训练权重并开始训练
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640

目标检测

from ultralytics import YOLO# 加载模型
model = YOLO('yolov8n.yaml')  # 从YAML构建新模型
model = YOLO('model/yolov8n.pt')  # 加载预训练模型(推荐用于训练)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # 从YAML构建并转移权重# 训练模型
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
# 从YAML构建新模型并从头开始训练
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640# 从预训练的*.pt模型开始训练
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640# 从YAML构建新模型,传递预训练权重并开始训练
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

数据集格式

在COCO128数据集上训练YOLOv8n模型100个时期,图像大小为640。可以使用device
参数指定训练设备。如果没有传递参数,并且有可用的GPU,则将使用GPU device=0,否则将使用device=cpu。有关完整列表的训练参数,请参见下面的参数部分。

!!! 示例 “单GPU和CPU训练示例”

设备将自动确定。如果有可用的GPU,那么将使用它,否则将在CPU上开始训练。

from ultralytics import YOLO# 加载一个模型
model = YOLO('yolov8n.yaml')  # 从YAML建立一个新模型
model = YOLO('model/yolov8n.pt')  # 加载预训练模型(推荐用于训练)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # 从YAML建立并转移权重# 训练模型
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
# 从YAML构建新模型,从头开始训练
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640# 从预训练*.pt模型开始训练
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640# 从YAML构建一个新模型,转移预训练权重,然后开始训练
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

多GPU训练

多GPU训练通过在多个GPU上分布训练负载,实现对可用硬件资源的更有效利用。无论是通过Python API还是命令行界面,都可以使用此功能。
若要启用多GPU训练,请指定您希望使用的GPU设备ID。

要使用2个GPU进行训练,请使用CUDA设备0和1,使用以下命令。根据需要扩展到更多GPU。

from ultralytics import YOLO# 加载模型
model = YOLO('model/yolov8n.pt')  # 加载预训练模型(推荐用于训练)# 使用2个GPU训练模型
results = model.train(data='coco128.yaml', epochs=100, imgsz=640, device=[0, 1])
# 使用GPU 0和1从预训练*.pt模型开始训练
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640 device=0,1

恢复中断的训练

在处理深度学习模型时,从之前保存的状态恢复训练是一个关键特性。在各种情况下,这可能很方便,比如当训练过程意外中断,或者当您希望用新数据或更多时期继续训练模型时。

恢复训练时,Ultralytics YOLO将加载最后保存的模型的权重,并恢复优化器状态、学习率调度器和时期编号。这允许您无缝地从离开的地方继续训练过程。

在Ultralytics YOLO中,您可以通过在调用train方法时将resume参数设置为True并指定包含部分训练模型权重的.pt
文件路径来轻松恢复训练。

下面是使用Python和命令行恢复中断训练的示例:

from ultralytics import YOLO# 加载模型
model = YOLO('path/to/last.pt')  # 加载部分训练的模型# 恢复训练
results = model.train(resume=True)
# 恢复中断的训练
yolo train resume model=path/to/last.pt

通过设置resume=Truetrain函数将从’path/to/last.pt’文件中存储的状态继续训练。如果省略resume
参数或将其设置为Falsetrain函数将启动新的训练会话。

请记住,默认情况下,检查点会在每个时期结束时保存,或者使用save_period参数以固定间隔保存,因此您必须至少完成1个时期才能恢复训练运行。

参数

YOLO模型的训练设置是指用于对数据集进行模型训练的各种超参数和配置。这些设置会影响模型的性能、速度和准确性。一些常见的YOLO训练设置包括批大小、学习率、动量和权重衰减。其他可能影响训练过程的因素包括优化器的选择、损失函数的选择以及训练数据集的大小和组成。仔细调整和实验这些设置以实现给定任务的最佳性能是非常重要的。

描述
modelNone模型文件路径,例如 yolov8n.pt, yolov8n.yaml
dataNone数据文件路径,例如 coco128.yaml
epochs100训练的轮次数量
patience50早停训练的等待轮次
batch16每批图像数量(-1为自动批大小)
imgsz640输入图像的大小,以整数表示
saveTrue保存训练检查点和预测结果
save_period-1每x轮次保存检查点(如果<1则禁用)
cacheFalseTrue/ram, disk 或 False。使用缓存加载数据
deviceNone运行设备,例如 cuda device=0 或 device=0,1,2,3 或 device=cpu
workers8数据加载的工作线程数(如果DDP则为每个RANK)
projectNone项目名称
nameNone实验名称
exist_okFalse是否覆盖现有实验
pretrainedTrue(bool 或 str) 是否使用预训练模型(bool)或从中加载权重的模型(str)
optimizer'auto'使用的优化器,选择范围=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
verboseFalse是否打印详细输出
seed0随机种子,用于可重复性
deterministicTrue是否启用确定性模式
single_clsFalse将多类数据作为单类训练
rectFalse矩形训练,每批为最小填充整合
cos_lrFalse使用余弦学习率调度器
close_mosaic10(int) 最后轮次禁用马赛克增强(0为禁用)
resumeFalse从最后检查点恢复训练
ampTrue自动混合精度(AMP)训练,选择范围=[True, False]
fraction1.0训练的数据集比例(默认为1.0,即训练集中的所有图像)
profileFalse在训练期间为记录器分析ONNX和TensorRT速度
freezeNone(int 或 list, 可选) 在训练期间冻结前n层,或冻结层索引列表
lr00.01初始学习率(例如 SGD=1E-2, Adam=1E-3)
lrf0.01最终学习率 (lr0 * lrf)
momentum0.937SGD动量/Adam beta1
weight_decay0.0005优化器权重衰减5e-4
warmup_epochs3.0热身轮次(小数ok)
warmup_momentum0.8热身初始动量
warmup_bias_lr0.1热身初始偏差lr
box7.5框损失增益
cls0.5cls损失增益(根据像素缩放)
dfl1.5dfl损失增益
pose12.0姿态损失增益(仅限姿态)
kobj2.0关键点obj损失增益(仅限姿态)
label_smoothing0.0标签平滑(小数)
nbs64标称批大小
overlap_maskTrue训练期间掩码应重叠(仅限分割训练)
mask_ratio4掩码降采样比率(仅限分割训练)
dropout0.0使用dropout正则化(仅限分类训练)
valTrue训练期间验证/测试

记录

在训练YOLOv8模型时,跟踪模型随时间的性能变化可能非常有价值。这就是记录发挥作用的地方。Ultralytics的YOLO提供对三种类型记录器的支持 -
Comet、ClearML和TensorBoard。

要使用记录器,请在上面的代码片段中的下拉菜单中选择它并运行。所选的记录器将被安装和初始化。

TensorBoard

TensorBoard
是TensorFlow的可视化工具包。它允许您可视化TensorFlow图表,绘制有关图表执行的定量指标,并展示通过它的附加数据,如图像。

在Google Colab
中使用TensorBoard:

load_ext tensorboard
tensorboard --logdir ultralytics/runs  # 替换为'runs'目录

在本地使用TensorBoard,运行下面的命令并在 http://localhost:6006/ 查看结果。

tensorboard --logdir ultralytics/runs  # 替换为'runs'目录

这将加载TensorBoard并将其定向到保存训练日志的目录。

在设置好日志记录器后,您可以继续进行模型训练。所有训练指标将自动记录在您选择的平台中,您可以访问这些日志以监控模型随时间的表现,比较不同模型,并识别改进的领域。

Ultralytics YOLO 的模型导出

使用示例

将 YOLOv8n 模型导出为 ONNX 或 TensorRT 等不同格式。查看下面的参数部分,了解完整的导出参数列表。

from ultralytics import YOLO# 加载模型
model = YOLO('model/yolov8n.pt')  # 加载官方模型
model = YOLO('path/to/best.pt')  # 加载自定义训练的模型# 导出模型
model.export(format='onnx')
yolo export model=yolov8n.pt format=onnx  # 导出官方模型
yolo export model=path/to/best.pt format=onnx  # 导出自定义训练的模型

参数

YOLO 模型的导出设置是指用于在其他环境或平台中使用模型时保存或导出模型的各种配置和选项。这些设置会影响模型的性能、大小和与不同系统的兼容性。一些常见的
YOLO 导出设置包括导出的模型文件格式(例如 ONNX、TensorFlow SavedModel)、模型将在哪个设备上运行(例如
CPU、GPU)以及是否包含附加功能,如遮罩或每个框多个标签。其他可能影响导出过程的因素包括模型用途的具体细节以及目标环境或平台的要求或限制。重要的是要仔细考虑和配置这些设置,以确保导出的模型针对预期用例经过优化,并且可以在目标环境中有效使用。

描述
format'torchscript'导出的格式
imgsz640图像尺寸,可以是标量或 (h, w) 列表,比如 (640, 480)
kerasFalse使用 Keras 导出 TF SavedModel
optimizeFalseTorchScript:为移动设备优化
halfFalseFP16 量化
int8FalseINT8 量化
dynamicFalseONNX/TensorRT:动态轴
simplifyFalseONNX/TensorRT:简化模型
opsetNoneONNX:opset 版本(可选,默认为最新版本)
workspace4TensorRT:工作区大小(GB)
nmsFalseCoreML:添加 NMS

导出格式

下表中提供了可用的 YOLOv8 导出格式。您可以使用 format 参数导出任何格式的模型,比如 format='onnx'format='engine'

格式format 参数模型元数据参数
PyTorch-yolov8n.pt-
TorchScripttorchscriptyolov8n.torchscriptimgsz, optimize
ONNXonnxyolov8n.onnximgsz, half, dynamic, simplify, opset
OpenVINOopenvinoyolov8n_openvino_model/imgsz, half
TensorRTengineyolov8n.engineimgsz, half, dynamic, simplify, workspace
CoreMLcoremlyolov8n.mlpackageimgsz, half, int8, nms
TF SavedModelsaved_modelyolov8n_saved_model/imgsz, keras
TF GraphDefpbyolov8n.pbimgsz
TF Litetfliteyolov8n.tfliteimgsz, half, int8
TF Edge TPUedgetpuyolov8n_edgetpu.tfliteimgsz
TF.jstfjsyolov8n_web_model/imgsz
PaddlePaddlepaddleyolov8n_paddle_model/imgsz
ncnnncnnyolov8n_ncnn_model/imgsz, half

Yolov8 训练代码+部署事例+参考手册 1G资料

下载链接:点击下载
资料压缩包

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641500.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024年安全员-C证证考试题库及安全员-C证试题解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年安全员-C证证考试题库及安全员-C证试题解析是安全生产模拟考试一点通结合&#xff08;安监局&#xff09;特种作业人员操作证考试大纲和&#xff08;质检局&#xff09;特种设备作业人员上岗证考试大纲随机出的…

力扣第92题——反转链表 II(C语言题解)

题目描述 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&#xff1…

Linux的一些快捷键(hot keyboard)

Ctrl Alt t&#xff1a;打开bash&#xff08;就是命令框窗口&#xff09; Ctrl Alt F3~F6&#xff1a;打开tty终端&#xff08;纯命令行终端&#xff0c;每个Linux发行版不相同&#xff0c;我的是Ubuntu20版&#xff09; Alt F4&#xff1a;关闭当前窗口&#xff08;Windo…

知识图谱的广泛应用与价值

目录 前言1 语义搜索2 知识问答2.1 问答对的深度关联2.2 文本挖掘与答案精准性2.3 知识图谱问答的全面服务 3 辅助推荐4 辅助大数据分析4.1 知识图谱推理的应用4.2 知识图谱的数据分析4.3 动态本体技术的引入 5 故障诊断5.1 故障诊断系统的应用5.2 知识图谱在语言理解中的作用5…

【书生·浦语大模型实战营06】《OpenCompass 大模型评测》学习笔记

《OpenCompass 大模型评测》 文档&#xff1a;OpenCompass大模型评测教程 1、主观评测 2、提示词工程 李华每周给2个不同的朋友写一封3页的信&#xff0c;一周写两次。他一年总共写了多少页的信? 李华每周给2个不同的朋友写一封3页的信&#xff0c; 一周写两次。他一年总共…

初识java—java的运算符以及程序逻辑结构

文章目录 算术运算符关系运算符逻辑运算符(重点)逻辑与 &&逻辑 ||逻辑非&#xff01;短路求值&#xff08;重点&#xff09; 程序逻辑控制顺序结构分支结构&#xff08;if else结构&#xff09;switch语句基本语法 循环结构breakcontinue 从键盘输入 算术运算符 基本四…

pygame入门学习(四)位图的使用

大家好&#xff01;我是码银&#x1f970; 欢迎关注&#x1f970;&#xff1a; CSDN&#xff1a;码银 公众号&#xff1a;码银学编程 载入图片 pygame.image.load( )&#xff0c;Pygame 可以通过pygame.image.load( )函数处理位图文件。 大致可以支持以下文件&#xff1a;JPG…

Linux--文件链接

目录 1.建立软连接 2.建立硬链接 3.什么是软链接 Linux中软链接的应用场景 4.什么是硬链接 5.文件与目录的硬链接数 6.软链接与硬链接的区别 用户无法对目录建立硬链接&#xff0c;可以建立软连接。 在Linux中文件的链接有两种&#xff1a;1.软连接 2.硬链接 1.建立软…

Oracle 高级网络压缩 白皮书

英文版白皮书在这里 或 这里。 本文包括了对英文白皮书的翻译&#xff0c;和我觉得较重要的要点总结。 执行概述 Oracle Database 12 引入了一项新功能&#xff1a;高级网络压缩&#xff0c;作为高级压缩选项的一部分。 本文概述了高级网络压缩、其优点、配置细节和性能分析…

HTML+CSS:3D轮播卡片

效果演示 实现了一个3D翻转的卡片动画&#xff0c;其中每个卡片都有不同的图片和不同的旋转角度。整个动画循环播放&#xff0c;无限次。整个页面的背景是一个占据整个屏幕的背景图片&#xff0c;并且页面内容被隐藏在背景图片之下。 Code <div class"container"…

redis 入门及相关知识汇总

什么是 Redis &#xff1f; 1&#xff0c;相对于mysql &#xff0c;oracle &#xff0c; 这种关系西数据库&#xff0c; 我们还有非关系数据库服务&#xff0c;他的产生是为了&#xff0c;解决常规数据库的并发能力&#xff0c;传统的关系型数据库受限于IO 和性能瓶颈&#xff…

【解决方法】pdf密码忘了怎么办?

PDF文件可以加密&#xff0c;大家都不陌生&#xff0c;并且大家应该也都知道PDF文件有两种密码&#xff0c;一个打开密码、一个限制编辑密码&#xff0c;因为PDF文件设置了密码&#xff0c;那么打开、编辑PDF文件就会受到限制。忘记了PDF密码该如何解密&#xff1f; PDF和offi…

异步编程(JS)

前言 想要学习Promise&#xff0c;我们首先要了解异步编程、回调函数、回调地狱三方面知识&#xff1a; 异步编程 异步编程技术使你的程序可以在执行一个可能长期运行的任务的同时继续对其他事件做出反应而不必等待任务完成。 与此同时&#xff0c;你的程序也将在任务完成后显示…

微服务Spring Cloud架构详解

"Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具&#xff08;例如配置管理&#xff0c;服务发现&#xff0c;断路器&#xff0c;智能路由&#xff0c;微代理&#xff0c;控制总线&#xff09;。分布式系统的协调导致了样板模式, 使用Spring Cloud开…

Flowable_dmn决策引擎应用

Flowable官方文档 https://www.flowable.com/open-source/docs/dmn/ch02-Configuration 对flowable的bpmn和dmn应用都比较熟悉&#xff0c;前后应用了好几年&#xff0c;年终总结需要这部分&#xff0c;文档就写一下分享给大家&#xff0c;搭建和资源下载参考&#xff1a; flo…

怎么提升数据分析能力?——功法篇(下)

先来复习一下上篇提到的3个疑问&#xff1a; 为什么我做出来的分析总觉得没有别人的那么高级&#xff1f; 老板为什么总说我的分析“太浅了”&#xff1f; 数据分析师每天的工作就是取数做需求&#xff1f; 看完上篇讲的金字塔原理&#xff0c;如果你还有疑问&#xff0c;不妨再…

【江科大】STM32:TIM输入捕获(理论部分)

文章目录 IC&#xff08;Input Capture&#xff09;输入捕获PWM频率 知识点补充1. 滤波器的工作原理&#xff1a;2. 边沿检测器&#xff1a;自动化清零CNT输入捕获的基本结构PWMI基本结构滤波器和分频器的区别误差分析pwm.cmain.cIC.c PWM模式测频率和占空比 IC&#xff08;Inp…

手机备忘录设置提醒后不通知怎么办 解决方法来了

在这个快节奏的时代&#xff0c;我们每个人都像是旋转的陀螺&#xff0c;总有无数的事项需要记录。手机备忘录&#xff0c;无疑成为了我们的得力助手。它轻便、简单&#xff0c;随时随地都能捕捉那些一闪而过的灵感和任务。 然而&#xff0c;有时我们会遇到这样的困扰&#xf…

Django入门,十分钟学会登录网页

我们假定你已经阅读了 安装 Django。你能知道 Django 已被安装&#xff0c;且安装的是哪个版本&#xff0c;通过在命令提示行输入命令 cmd黑窗口运行&#xff0c;不懂cmd百度一下 python -m django --version 如果没出现版本&#xff0c;就是没安装&#xff0c;那么用pip安装…

《WebKit 技术内幕》学习之十(2): 插件与JavaScript扩展

2 Chromium PPAPI插件 2.1 原理 插件其实是一种统称&#xff0c;表示一些动态库&#xff0c;这些动态库根据定义的一些标准接口可以跟浏览器进行交互&#xff0c;至于这个标准接口是什么都可以&#xff0c;重要的是大家都遵循它们&#xff0c;NPAPI接口标准只是其中的一种&a…