大数据开发之Spark(入门)

第 1 章:Spark概述

1.1 什么是spark

回顾:hadoop主要解决,海量数据的存储和海量数据的分析计算。
spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。

1.2 hadoop与spark历史

hadoop的yarn框架比spark框架诞生的晚,所以spark自己也涉及了一套资源调度框架。
区别:
1、mr是基于磁盘的,spark是基于内存
2、mr的task是进程
3、spark的task是线程,在executor进程里执行的是线程
4、mr在container里执行(留有接口方便插入),spark在worker里执行(自己用,没有接口)
5、mr适合做一次计算,spark适合做迭代计算

1.3 hadoop与spark框架对比

1、hadoop mr框架
从数据源获取数据,经过分析计算,将结果输出到指定位置,核心是一次计算,不适合迭代计算。
在这里插入图片描述

2、spark框架
spark框架计算比mr快的原因是:中间结果不落盘。注意spark的shuffle也是落盘的。
在这里插入图片描述

1.4 spark内置模块

在这里插入图片描述

spark core:实现了spark的基本功能,包括任务调度、内存管理、错误恢复、与存储系统交互等模块。spark core中还包含了对弹性分布式数据集(resilient distributed dataset,简称rdd)的api定义。
spark sql:是spark用来操作结构化数据的程序包。通过spark sql,我们可以使用sql或者apache hive版本的hql来查询数据。spark sql支持多种数据源,比如hive表、parquet以及json等。
spark mllib:提供常见的机器学习功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据导入等额外的支持功能。
spark graphx:主要用于图形并行计算和图挖掘系统的组件。
集群管理器:spark设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计算。为了实现这样的要求,同时获得最大灵活性,spark支持在各种集群管理器(cluster manager)上运行,包括hadoop yarn、apache mesos,以及spark自带的一个简易调度器,叫做独立调度器。

1.5 spark特点

1、快:与hadoop的mapreduce相比,spark基于内存的运算要快上100倍以上,基于硬盘的运算也要快10倍以上。spark实现了高效的dag执行引擎,口头语通过基于内存来高效处理数据流。计算的中间结果是存在于内存中的。
2、易用:spark支持java、python和scala的api,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且spark支持交互式的python和scala的shell,可以非常方便地在这些shell种使用spark集群来验证解决问题的方法。
3、通用:spark提供了统一的解决方案。spark可以用于,交互式查询(spark sql)、实时流处理(spark streaming)、机器学习(spark mllib)和图计算(graphx)。这些不同类型的处理1都可以在同一个应用种无缝使用。减少了开发和维护的人力成本和部署平台的物力成本。
4、兼容性:spark可以非常方便地与其它地开源产品进行融合。比如:spark可以使用hadoop的yarn和apache mesos作为它的资源管理和调度器,并且可以处理所有hadoop支持的数据,包括hdfs、hbase等。这对于已经部署hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用spark的强大处理能力。

第 2 章:spark运行模式

部署spark集群大体上分为两种模式:单机模式与集群模式
大多数分布式框架都支持单机模式,方便开发者调试框架的运行环境。但是在生产环境种,并不会使用单机模式。因此,后续直接按照集群模式部署spark集群。
下面详细列举了spark目前支持的部署模式。
1、local模式:在本地部署spark服务
2、standalone模式:spark自带的任务调度模式。(国内常用)
3、yarn模式:spark使用hadoop的yarn组件进行资源和任务调度。(国内最常用)
4、mesos模式:spark使用mesos平台进行资源与任务的调度。(国内很少用)

2.2 local模式

local模式就是运行在一台计算机上的模式,通常就是用于在本机上练手和测试

2.2.1 安装使用

1)上传并解压spark安装包

[atguigu@hadoop102 sorfware]$ tar -zxvf spark-3.1.3-bin-hadoop3.2.tgz -C /opt/module/
[atguigu@hadoop102 module]$ mv spark-3.1.3-bin-hadoop3.2 spark-local

2)官方求pi案例

[atguigu@hadoop102 spark-local]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

可以查看spark-submit所用参数

[atguigu@hadoop102 spark-local]$ bin/spark-submit

–class:表示要执行程序的主类
–master local[2]“
(1)local:没有指定线程数,则所有计算都运行在一个线程当中,没有任何并行计算。
(2)local[k]:指定使用k个core来运行计算,比如local[2]就是运行2个core来执行

20/09/20 09:30:53 INFO TaskSetManager:
20/09/15 10:15:00 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
20/09/15 10:15:00 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)

(3)local[*]:默认模式。自动帮你按照cpu最多核来设置线程数。比如cpu有8核,spark帮你自动设置8个线程。

20/09/20 09:30:53 INFO TaskSetManager:
20/09/15 10:15:58 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
20/09/15 10:15:58 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
20/09/15 10:15:58 INFO Executor: Running task 2.0 in stage 0.0 (TID 2)
20/09/15 10:15:58 INFO Executor: Running task 4.0 in stage 0.0 (TID 4)
20/09/15 10:15:58 INFO Executor: Running task 3.0 in stage 0.0 (TID 3)
20/09/15 10:15:58 INFO Executor: Running task 5.0 in stage 0.0 (TID 5)
20/09/15 10:15:59 INFO Executor: Running task 7.0 in stage 0.0 (TID 7)
20/09/15 10:15:59 INFO Executor: Running task 6.0 in stage 0.0 (TID 6)

3)结果展示
该算法是利用蒙特-卡罗算法求pi
在这里插入图片描述

2.2.2 官方wordcount案例

1、需求:读取多个输入文件,统计每个单词出现的总次数。
2、需求分析
在这里插入图片描述

3、代码实现
1)准备文件

[atguigu@hadoop102 spark-local]$ mkdir input

在Input下创建2个文件1.txt和2.txt,并输入一下内容

hello atguigu
hello spark

2)启动spark-shell

[atguigu@hadoop102 spark-local]$ bin/spark-shell20/07/02 10:17:11 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://hadoop102:4040
Spark context available as 'sc' (master = local[*], app id = local-1593656236294).
Spark session available as 'spark'.
Welcome to____              __/ __/__  ___ _____/ /___\ \/ _ \/ _ `/ __/  '_//___/ .__/\_,_/_/ /_/\_\   version 3.1.3/_/Using Scala version 2.12.10 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_212)
Type in expressions to have them evaluated.
Type :help for more information.scala>

注意:sc是sparkcore程序的入口;spark是sparksql程序入口;master=local[*]表示本地模式运行。
3)再开启一个hadoop102远程连接窗口,发现了一个sparksubmit进程

[atguigu@hadoop102 spark-local]$ jps
3627 SparkSubmit
4047 Jps

运行任务方式说明:spark-submit,是将jar上传到集群,执行spark任务;spark-shell,相当于命令行工具,本身也是一个application。
4)登录hadoop102:4040,查看程序运行情况
在这里插入图片描述

说明:本地模式下,默认的调度器为fifo。
5)运行workcount程序

scala>sc.textFile("/opt/module/spark-local/input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collectres0: Array[(String, Int)] = Array((hello,4), (atguigu,2), (spark,2))

注意:只有collect开始执行时,才会加载数据
可登录hadoop102:4040查看程序运行结果
在这里插入图片描述

2.3 standalone模式

standalone模式是spark自带的资源调度引擎,构建一个由master+worker构成的spark集群,spark运行在集群种。
这个要和hadoop中的standalone区别开来。这里的standalone是指只用spark来搭建一个集群,不需要借助hadoop的yarn和mesos等其它框架。

2.3.1 master和worker集群资源管理

master:spark特有资源调度系统的leader。掌管着整个集群的资源信息,类似于yarn框架中的resourcemanager。
worker:spark特有资源调度系统的slave,有多个。每个slave掌管着所在节点的资源信息,类似于yarn框架中的nodemanager。
在这里插入图片描述

master和worker是spark的守护进程、集群资源管理者,即spark在特定模式(standalone)下正常运行必须要有的后台常驻进程。

2.3.2 driber和executor任务的管理者

在这里插入图片描述

driver和executor是临时程序,当有具体任务提交到spark集群才会开启的程序。standalone模式是spark自带的资源调度引擎,构建一个由master+worker构成spark集群,spark运行在集群中。
这个要和hadoop中的standalone区别开来。这里的standalone是指只用spark来搭建一个集群,不需要借助hadoop的yarn和mesos等其它框架。

2.3.2 安装使用

1、集群规划
在这里插入图片描述

2、再解压一份spark安装包,并修改解压后的文件夹名称为spark-standalone

[atguigu@hadoop102 sorfware]$ tar -zxvf spark-3.1.3-bin-hadoop3.2.tgz -C /opt/module/
[atguigu@hadoop102 module]$ mv spark-3.1.3-bin-hadoop3.2 spark-standalone

3、进入spark的配置文件/opt/module/spark-standalone/conf

[atguigu@hadoop102 spark-standalone]$ cd conf

4、修改slave文件,添加work节点

atguigu@hadoop102 conf]$ mv slaves.template slaves
[atguigu@hadoop102 conf]$ vim slaves
hadoop102
hadoop103
hadoop104

5、修改spark-env.sh文件,添加master节点

[atguigu@hadoop102 conf]$ mv spark-env.sh.template spark-env.sh
[atguigu@hadoop102 conf]$ vim spark-env.shSPARK_MASTER_HOST=hadoop102
SPARK_MASTER_PORT=7077

6、分发spark-standalone包

[atguigu@hadoop102 module]$ xsync spark-standalone/

7、启动spark集群

[atguigu@hadoop102 module]$ xsync spark-standalone/

查看三台服务器运行进程(xcall.sh是以前数仓项目里面讲的脚本)

[atguigu@hadoop102 spark-standalone]$ xcall.sh jps
================atguigu@hadoop102================
3238 Worker
3163 Master
================atguigu@hadoop103================
2908 Worker
================atguigu@hadoop104================
2978 Worker

注意:如果遇见”Java_home not set“异常,可以在sbin目录下的spark-config.sh文件中加入如下配置

export JAVA_HOME=XXXX

8、网页查看:hadoop102:8080
9、官方求pi案例

[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

参数:–master spark://hadoop102:7077指定要连接的集群的master。
10、页面查看http://hadoop102:8080/,发现执行本次任务,默认采用三台服务器节点的总核数24核,每个节点内存1024M.
8080:master的webui
4040:application的webui的端口号
在这里插入图片描述

2.3.3 参数说明

1、配置executor可用内存为2G,使用cpu核数为2个

[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

2、页面查看http://hadoop102:8080/
在这里插入图片描述

3、基本语法

bin/spark-submit \
--class <main-class>
--master <master-url> \
... # other options
<application-jar> \
[application-arguments]

4、参数说明
在这里插入图片描述

2.3.4 配置历史服务

由于spark-shell停止掉后,hadoop102:4040页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况
1、修改spark-default.conf.template名称

[atguigu@hadoop102 conf]$ mv spark-defaults.conf.template spark-defaults.conf

2、修改spark-default.conf文件,配置日志存储路径

[atguigu@hadoop102 conf]$ vim spark-defaults.conf
spark.eventLog.enabled          true
spark.eventLog.dir              hdfs://hadoop102:8020/directory

注意:需要启动hdaoop集群,hdfs上的目录需要提前存在

[atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /directory

3、修改spark-env.sh文件,添加如下配置

[atguigu@hadoop102 conf]$ vim spark-env.shexport SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080 
-Dspark.history.fs.logDirectory=hdfs://hadoop102:8020/directory 
-Dspark.history.retainedApplications=30"

1)参数1含义:webui访问的端口号为18080
2)参数2含义:指定历史服务器日志存储路径(读)
3)参数3含义:指定保存application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上的显示的应用数
4、分发配置文件

[atguigu@hadoop102 conf]$ xsync spark-defaults.conf spark-env.sh

5、启动历史服务

[atguigu@hadoop102 spark-standalone]$ 
sbin/start-history-server.sh

6、再次执行任务

[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

7、查看spark历史服务地址:hadoop102:18080
在这里插入图片描述

2.3.5 配置高可用(HA)

1、高可用原理
在这里插入图片描述

2、配置高可用
1)停止集群

[atguigu@hadoop102 spark-standalone]$ sbin/stop-all.sh

2)zookeeper正常安装并启动(基于以前讲的数仓项目脚本)

[atguigu@hadoop102 zookeeper-3.4.10]$ zk.sh start

3)修改spark-env.sh文件添加如下配置

[atguigu@hadoop102 conf]$ vim spark-env.sh#注释掉如下内容:
#SPARK_MASTER_HOST=hadoop102
#SPARK_MASTER_PORT=7077#添加上如下内容。配置由Zookeeper管理Master,在Zookeeper节点中自动创建/spark目录,用于管理:
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER 
-Dspark.deploy.zookeeper.url=hadoop102,hadoop103,hadoop104 
-Dspark.deploy.zookeeper.dir=/spark"#添加如下代码
#Zookeeper3.5的AdminServer默认端口是8080,和Spark的WebUI冲突
export SPARK_MASTER_WEBUI_PORT=8989

4)分发配置文件

[atguigu@hadoop102 conf]$ xsync spark-env.sh

5)在hadoop102上启动全部节点

[atguigu@hadoop102 spark-standalone]$ sbin/start-all.sh

6)在hadoop103上单独启动master节点

[atguigu@hadoop103 spark-standalone]$ sbin/start-master.sh

7)在启动一个hadoop102窗口,将/opt/module/spark-local/input数据上传到hadoop集群的/input目录

[atguigu@hadoop102 spark-standalone]$ hadoop fs -put /opt/module/spark-local/input/ /input

8)spark ha集群访问

[atguigu@hadoop102 spark-standalone]$
bin/spark-shell \
--master spark://hadoop102:7077,hadoop103:7077 \
--executor-memory 2g \
--total-executor-cores 2

参数:–master spark://hadoop102:7077指定要连接的集群的master
注:一旦配置了高可用以后,master后面要连接多个master
9)执行wordcount程序

scala>sc.textFile("hdfs://hadoop102:8020/input").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collectres0: Array[(String, Int)] = Array((hello,4), (atguigu,2), (spark,2))

3、高可用性测试
在这里插入图片描述

1)查看hadoop102的master进程

[atguigu@hadoop102 ~]$ jps
5506 Worker
5394 Master
5731 SparkSubmit
4869 QuorumPeerMain
5991 Jps
5831 CoarseGrainedExecutorBackend

2)kill掉hadoop102的master进程,页面中观察http://hadoop103:8080/的状态是否切换为active

[atguigu@hadoop102 ~]$ kill -9 5394

3)再启动hadoop102的master进程

[atguigu@hadoop102 spark-standalone]$ sbin/start-master.sh

2.3.5 运行流程

spark由standalone-client核standalone-cluster两种模式,主要区别在于:driver程序的运行节点。
1、客户端模式

[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077,hadoop103:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

–deploy-mode client,表示driver程序运行再本地客户端,默认模式。
standalone client运行流程
在这里插入图片描述

2、集群模式

[atguigu@hadoop102 spark-standalone]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://hadoop102:7077,hadoop103:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

–deploy-mode cluster,表示driver程序运行在集群
standalone cluster运行流程
在这里插入图片描述

1)查看http://hadoop102:8989/页面,点击completed drivers里面的worker
在这里插入图片描述

2)跳转到spark worker页面,点击finished drivers中logs下面的stdout
在这里插入图片描述

3)最终打印结果如下
在这里插入图片描述

注意:在测试standalone模式,cluster运行流程的时候,阿里云用户访问不到worker,因为worker是从master内部跳转的,这是正常的,实际工作中我们不可能通过客户端访问的,这些恶端口都对外都会禁用,需要的时候会通过授权到master访问worker

2.4 yarn模式(重点)

spark客户端直接连接yarn,不需要额外构建spark集群

2.4.1 安装使用

1、停止standalone模式下的spark集群

[atguigu@hadoop102 spark-standalone]$ sbin/stop-all.sh
[atguigu@hadoop102 spark-standalone]$ zk.sh stop
[atguigu@hadoop103 spark-standalone]$ sbin/stop-master.sh

2、为了防止和standalone模式冲突,再单独解压一份spark

[atguigu@hadoop102 software]$ tar -zxvf spark-3.1.3-bin-hadoop3.2.tgz -C /opt/module/

3、进入到/opt/module目录,修改spark-~名称为spark-yarn

[atguigu@hadoop102 module]$ mv spark-3.1.3-bin-hadoop3.2/ spark-yarn

4、修改hadoop配置文件/opt/module/~/yarn-site.xml,添加如下内容
因为测试环境虚拟机内存较少,防止执行过程进行倍意外杀死,做如下处理

[atguigu@hadoop102 hadoop]$ vim yarn-site.xml
<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property><name>yarn.nodemanager.pmem-check-enabled</name><value>false</value>
</property><!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property><name>yarn.nodemanager.vmem-check-enabled</name><value>false</value>
</property>

5、分发配置文件

[atguigu@hadoop102 conf]$ xsync /opt/module/hadoop-3.1.3/etc/hadoop/yarn-site.xml

6、修改/opt/~/spark-env.sh,添加yarn_conf_dir配置,保证后续运行任务的路径都编程集群路径

[atguigu@hadoop102 conf]$ mv spark-env.sh.template spark-env.sh
[atguigu@hadoop102 conf]$ vim spark-env.shYARN_CONF_DIR=/opt/module/hadoop-3.1.3/etc/hadoop

7、启动hdfs以及yarn集群

[atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

8、执行一个程序

[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

参数:–master yarn,表示yarn方式运行;–deploy-mode,表示客户端方式运行程序
9、查看hadoop103:8088页面,点击history,查看历史页面
在这里插入图片描述

2.4.2 配置历史服务

由于是重新解压的spark压缩文件,所以需要针对yarn模式,再次配置一下历史服务器。
1、修改spark-default.conf.template名称

2、修改spark-default.conf文件,配置日志存储路径(写)

3、修改spark-env.sh文件,添加如下配置

参数1含义:webui访问的端口号为18080
参数2含义:指定历史服务器日志存储路径(读)
参数3含义:指定保存application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数

2.4.3 配置查看历史日志

为了能从yarn上关联到spark历史服务器,需要配置spark历史服务器关联路径
目的:点击yarn(8088)上spark任务的history按钮,进入的是spark历史服务器(18080),而不再是yarn历史服务器(19888)
1、修改配置文件/opt/module/~/spark-defaults.conf
添加如下内容:

spark.yarn.historyserver.address=hadoop102:18080
spark.history.ui.port=18080

2、重启spark历史服务

[atguigu@hadoop102 spark-yarn]$ sbin/stop-history-server.sh [atguigu@hadoop102 spark-yarn]$ sbin/start-history-server.sh 

3、提交任务到yarn执行

[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

4、web页面查看日志:http://hadoop103:8088/cluster
在这里插入图片描述

点击”history“跳转到http://hadoop102:18080/
在这里插入图片描述

2.4.4 运行流程

spark由yarn-client和yarn-cluster两种模式,主要区别在于:driver程序的运行节点
yarn-client:driver程序运行在客户端,适用于交互、调试,希望立即看到app的输出
yarn-cluster:driver程序运行在由resourcemanager启动的appmaster,适用于生产环境
1、客户端模式(默认)

[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

yarnclient运行模式介绍
在这里插入图片描述

2、集群模式

[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.1.3.jar \
10

(1)查看http://hadoop103:8088/cluster页面,点击history按钮,跳转到历史详情页面
在这里插入图片描述

(2)http://hadoop102:18080点击executors->点击driver的stdout
在这里插入图片描述

注意:如果在yarn日志端无法查看到具体的日志,则在yarn-site.xml中添加如下配置并启动yarn历史服务器
在这里插入图片描述

<property><name>yarn.log.server.url</name><value>http://hadoop102:19888/jobhistory/logs</value>
</property>

注意:hadoop历史服务器也要启动 mr-jobhistory-daemon.sh start historyserver
yarncluster模式
在这里插入图片描述

2.6 几种模式对比

在这里插入图片描述

2.7 端口号总结

1、spark查看当前spark-shell运行任务情况端口号:4040
2、spark master内部通信服务端口号:7077(类似于yarn的8032(rm和nm的内部通信)端口)
3、spark standalone模式master web端口号:8080(类似于hadoop yarn任务运行情况查看端口号:8088)(yarn模式)8989
4、spark历史服务器端口号:18080(类似于hadoop历史服务器端口号:19888)

第 3 章:workcount案例实操

spark shell仅在测试和验证我们的程序时使用的较多,在生产环境中,通常会在idea中编制程序,然后打包jar包,然后提交到集群,最常用的是创建一个maven项目,利用maven来管理jar包的依赖。

3.1 部署环境

1、创建一个maven项目wordcount
2、在项目wordcount上点击右键,add framework support -> 勾选scala
3、在main下创建scala文件夹,并右键mark directory as sources root -> 在scala下创建包com.atguigu.spark
4、输入文件夹准备
在这里插入图片描述
在这里插入图片描述

5、导入项目依赖
下方的的是scala语言打包插件,只要使用scala语法打包运行到linux上面,必须要有

<dependencies><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.1.3</version></dependency>
</dependencies><build><finalName>WordCount</finalName><plugins><plugin><groupId>net.alchim31.maven</groupId><artifactId>scala-maven-plugin</artifactId><version>3.4.6</version><executions><execution><goals><goal>compile</goal><goal>testCompile</goal></goals></execution></executions></plugin></plugins>
</build>

3.2 本地调试

本地spark程序调试需要使用local提交模式,即将本机当作运行环境,master和worker都为本机。运行时直接加断点调试即可。如下:
1、代码实现

package com.atguigu.sparkimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object WordCount {def main(args: Array[String]): Unit = {//1.创建SparkConf并设置App名称val conf = new SparkConf().setAppName("WC").setMaster("local[*]")//2.创建SparkContext,该对象是提交Spark App的入口val sc = new SparkContext(conf)//3.读取指定位置文件:hello atguigu atguiguval lineRdd: RDD[String] = sc.textFile("input")//4.读取的一行一行的数据分解成一个一个的单词(扁平化)(hello)(atguigu)(atguigu)val wordRdd: RDD[String] = lineRdd.flatMap(_.split(" "))//5. 将数据转换结构:(hello,1)(atguigu,1)(atguigu,1)val wordToOneRdd: RDD[(String, Int)] = wordRdd.map((_, 1))//6.将转换结构后的数据进行聚合处理 atguigu:1、1 =》1+1  (atguigu,2)val wordToSumRdd: RDD[(String, Int)] = wordToOneRdd.reduceByKey(_+_)//7.将统计结果采集到控制台打印wordToSumRdd.collect().foreach(println)//8.关闭连接sc.stop()}
}

2、调试流程
在这里插入图片描述

spark程序运行过程中会打印大量的执行日志,为了能够更好的查看程序的执行结果,可以在项目的resources目录中创建log4j.properties文件,并添加日志配置文件:

log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n# Set the default spark-shell log level to ERROR. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=ERROR# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR

3、集群运行

3.3 集群运行

1、修改代码,修改运行模式,将输出的方法修改为落盘,同时设置可以自定义的传入传出路径

package com.atguigu.sparkimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object WordCount {def main(args: Array[String]): Unit = {// 创建配置对象 添加配置参数val conf: SparkConf = new SparkConf().setAppName("wc")// 如果是yarn模式  写yarn// 如果是本地模式一定要写local.setMaster("yarn")// 初始化scval sc = new SparkContext(conf)// 编写wordCount计算流程// 把读入和写出的路径  做成动态的参数  可以由用户手动填写// 写成main方法参数val lineRDD: RDD[String] = sc.textFile(args(0))// 切分val wordRDD: RDD[String] = lineRDD.flatMap(_.split(" "))// 转换val tupleOneRDD: RDD[(String, Int)] = wordRDD.map((_, 1))// 聚合val wordCountRDD: RDD[(String, Int)] = tupleOneRDD.reduceByKey(_ + _)// 触发计算  一定要使用行动算子// 将结果保存到文件中// 不能重复写入同一个路径wordCountRDD.saveAsTextFile(args(1))}
}

2、打包到集群测试
1)点击package打包,然后,查看打包完后的jar包
在这里插入图片描述

2)将wordcount.jar上传到/opt/module/spark-yarn目录
3)在hdfs上创建,存储输入文件的路径/input

[atguigu@hadoop102 spark-yarn]$ hadoop fs -mkdir /input

4)上传输入文件到/input路径

[atguigu@hadoop102 spark-yarn]$ hadoop fs -put /opt/module/spark-local/input/1.txt /input

5)执行任务

[atguigu@hadoop102 spark-yarn]$ bin/spark-submit \
--class com.atguigu.spark.WordCount \
--master yarn \
./WordCount.jar \
hdfs://hadoop102:8020/input \
hdfs://hadoop102:8020/output

注意:input和output都是hdfs上的集群路径
6)查看运行结果

[atguigu@hadoop102 spark-yarn]$ hadoop fs -cat /output/*

3.4 关联源码

1、按住ctrl键,点击rdd
在这里插入图片描述

2、提示下载或者绑定源码
在这里插入图片描述

3、解压资料包中spark-3.1.3.tgz到非中文路径。例如解压到:e:\02_software
4、点击attach source…按钮,选择源码路径e:\02_software\spark-3.1.3

3.5 异常处理

如果本机操作系统是windows,如果在程序中使用了hadoop相关的东西,比如写入文件到hdfs,则会遇到如下异常:
在这里插入图片描述

出现这个问题的原因,并不是程序的错误,而是用到了hadoop相关的服务,解决办法
1、配置hadoop_home环境变量
2、在idea中配置 run configuration,添加hadoop_home变量
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641463.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS实现文本和图片无限滚动动画

Demo图如下&#xff1a; <style>* {margin: 0;padding: 0;box-sizing: border-box;font-family: Poppins, sans-serif;}body {min-height: 100vh;background-color: rgb(11, 11, 11);color: #fff;display: flex;flex-direction: column;justify-content: center;align-i…

Vision Mamba:将Mamba应用于计算机视觉任务的新模型

Mamba是LLM的一种新架构&#xff0c;与Transformers等传统模型相比&#xff0c;它能够更有效地处理长序列。就像VIT一样现在已经有人将他应用到了计算机视觉领域&#xff0c;让我们来看看最近的这篇论文“Vision Mamba: Efficient Visual Representation Learning with Bidirec…

Kubernetes operator(一)client-go篇【更新中】

云原生学习路线导航页&#xff08;持续更新中&#xff09; 本文是 Kubernetes operator学习 系列第一篇&#xff0c;主要对client-go进行学习&#xff0c;从源码阅读角度&#xff0c;学习client-go各个组件的实现原理、如何协同工作等参考视频&#xff1a;Bilibili 2022年最新k…

pod的亲和性和反亲和性

pod的亲和性和反亲和性 调度策略&#xff1a; 匹配标签 操作符 拓扑域 调度目标 node的亲和性 主机标签 In Notin exists doesexists Gt Lt 不支持 指定主机 pod的亲和性 pod的标签 In Notin exists doesexists 支持 pod和指…

什么是 Web3.0

什么是Web3.0 对于 Web3.0 的解释网上有很多&#xff0c;目前来说 Web3.0 是一个趋势&#xff0c;尚未有明确的定义。我们今天讨论下几个核心的点&#xff0c;就能很好的理解 Web3.0 要解决哪些问题 谁创造数据&#xff0c;这里的数据可以是一篇博客&#xff0c;一段视频&…

Oracle Linux 8.9 安装图解

风险告知 本人及本篇博文不为任何人及任何行为的任何风险承担责任&#xff0c;图解仅供参考&#xff0c;请悉知&#xff01;本次安装图解是在一个全新的演示环境下进行的&#xff0c;演示环境中没有任何有价值的数据&#xff0c;但这并不代表摆在你面前的环境也是如此。生产环境…

在Vue.js中,什么是mixins?它们的作用是什么?

目录 一、Vue.js介绍 二、什么是mixins 三、mixins的应用场景 四、mixins的优势和作用 一、Vue.js介绍 Vue.js是一种流行的JavaScript前端框架,用于构建交互式的Web界面。它被设计为易于理解和集成的框架,使开发者能够快速构建可复用的组件化应用程序。Vue.js采用了MVVM&a…

如何测试python 版本与 torch 、 torchvision 版本是否对应?

python 版本与 torch 、 torchvision 版本的对应关系如下图所示&#xff1a; 打开 anaconda powershell prompt&#xff0c;输入如下命令&#xff1a; >python>>>import torch>>>c torch.ones((3,1)) //创建矩阵>>>c c.cuda(0) …

Keepalived + Nginx双主架构

Keepalived Nginx双主架构 环境准备&#xff1a; keepalived_master1服务器nginx&#xff1a;172.20.26.167 keepalived_master2服务器nginx&#xff1a;172.20.26.198 各服务器关闭selinux、防火墙等服务。 开机安装部署nginx 在172.20.26.167服务器上 yum install ngi…

分布式深度学习中的数据并行和模型并行

&#x1f380;个人主页&#xff1a; https://zhangxiaoshu.blog.csdn.net &#x1f4e2;欢迎大家&#xff1a;关注&#x1f50d;点赞&#x1f44d;评论&#x1f4dd;收藏⭐️&#xff0c;如有错误敬请指正! &#x1f495;未来很长&#xff0c;值得我们全力奔赴更美好的生活&…

LLMs之Vanna:Vanna(利用自然语言查询数据库的SQL工具+底层基于RAG)的简介、安装、使用方法之详细攻略

LLMs之Vanna&#xff1a;Vanna(利用自然语言查询数据库的SQL工具底层基于RAG)的简介、安装、使用方法之详细攻略 目录 Vanna的简介 1、用户界面 2、RAG vs. Fine-Tuning 3、为什么选择Vanna&#xff1f; 4、扩展Vanna Vanna的安装和使用方法 1、安装 2、训练 (1)、使用…

c#中使用UTF-8编码处理多语言文本的有效策略

使用UTF-8编码处理多语言文本的有效策略 在当今的全球化时代&#xff0c;软件开发者常常需要处理包含多种语言的文本。这不仅涉及英文和其他西方语言&#xff0c;还包括中文、日文、韩文等多字节字符系统。在这篇博客中&#xff0c;我将探讨如何有效地使用UTF-8编码来处理混合语…

项目管理认证 | 什么是PMP项目管理?PMP证书有什么用?

01 什么是项目管理&#xff1f; 项目管理&#xff1f;听起来似乎离我们很遥远。其实不然&#xff0c; 学习了项目管理知识后&#xff0c;你会发现&#xff0c;“一切都是项目&#xff0c;一切也将成为项目”。 你可以把港珠澳大桥的建设、开发一款新型手机、开发一个好用的C…

HarmonyOS 发送http网络请求

好 本文 我们来说 http请求 首先 我们要操作网络内容 需要申请权限 项目中找到 main目录下的module.json5 最下面加上 "requestPermissions": [{"name": "ohos.permission.INTERNET"} ]这里 我在本地写了一个get接口 大家可以想办法 弄一个后…

RabbitMQ交换机

目录 交换机类型 直连交换机&#xff1a;Direct exchange 主题交换机&#xff1a;Topic exchange 扇形交换机&#xff1a;Fanout exchange 首部交换机&#xff1a;Headers exchange 死信交换机&#xff1a;Dead Letter Exchange 交换机的属性 代码实战 直连&#…

x-cmd pkg | frp - 内网穿透工具

简介 frp&#xff08;Fast Reverse Proxy&#xff09;是一个专注于内网穿透的高性能反向代理应用&#xff0c;可以将内网服务以安全、便捷的方式通过具有公网 IP 节点的中转暴露到公网。 它采用 C/S 模式&#xff0c;将服务端部署在具有公网 IP 的机器上&#xff0c;客户端部…

使用torch实现RNN

在实验室的项目遇到了困难&#xff0c;弄不明白LSTM的原理。到网上搜索&#xff0c;发现LSTM是RNN的变种&#xff0c;那就从RNN开始学吧。 带隐藏状态的RNN可以用下面两个公式来表示&#xff1a; 可以看出&#xff0c;一个RNN的参数有W_xh&#xff0c;W_hh&#xff0c;b_h&am…

[AutoSar]BSW_OS 06 Autosar OS_Alarms

一、 目录 一、关键词平台说明一、Timer1.1 配置1.2Periodical Interrupt Timer (PIT)和High Resolution Timer (HRT) 二、Alarm 工作机制三、Code3.1创建一个15ms的runnable3.2mapping到basic task3.3生成代码 关键词 嵌入式、C语言、autosar、OS、BSW 平台说明 项目ValueO…

k8s的helm

1、在没有helm之前&#xff0c;部署deployment、service、ingress等等 2、helm的作用&#xff1a;通过打包的方式&#xff0c;deployment、service、ingress这些打包在一块&#xff0c;一键部署服务、类似于yum功能 3、helm&#xff1a;官方提供的一种类似于仓库的功能&#…

时间轮设计

目录 基本概念 函数定义 函数实现与测试 测试1结果如下 测试2结果如下 基本概念 时间轮 是一种 实现延迟功能&#xff08;定时器&#xff09; 的 巧妙算法。如果一个系统存在大量的任务调度&#xff0c;时间轮可以高效的利用线程资源来进行批量化调度。把大批量的调度任务…