机器学习_正则化、欠拟合和过拟合

文章目录

  • 正则化
  • 欠拟合和过拟合
  • 正则化参数


正则化

机器学习中的正则化是在损失函数里面加惩罚项,增加建模的模糊性,从而把捕捉到的趋势从局部细微趋势,调整到整体大概趋势。虽然一定程度上地放宽了建模要求,但是能有效防止过拟合的问题,增加模型准确性。它影响的是模型的权重。

normalization 和 standardization :标准化、规范化,以及归一化,是调整数据,特征缩放;
regularization:而正则化,是调整模型,约束权重。

欠拟合和过拟合

正则化技术所要解决的过拟合问题,连同欠拟合(underfit)一起,都是机器学习模型调优(找最佳模型)、参数调试(找模型中的最佳参数)过程中的主要阻碍。

下面用图来描述欠拟合和过拟合。这是针对一个回归问题的3个机器学习模型,如下图所示。
在这里插入图片描述
发现上图第1个简单的函数模型不如复杂一点的模型拟合效果好,所以调整模型之后,有可能会得到更小的均方误差(上图第2个)。如果继续追求更完美的效果,甚至接近于0的损失,可能会得到类似于上图第3个函数图形。

不能主要看训练集上的损失,更重要的是看测试集上的损失。让我们画出机器学习模型优化过程中的误差图像,如下图所示。
在这里插入图片描述
看得出来,一开始模型“很烂”的时候,训练集和测试集的误差都很大,这是欠拟合。随着模型的优化,训练集和测试集的误差都有所下降,其中训练集的误差值要比测试集的低。这很好理解,因为函数是根据训练集拟合的,泛化到测试集之后表现会稍弱一点。但是,如果此处继续增加模型对训练集的拟合程度,会发现测试集的误差将逐渐升高。这个过程就被称作过拟合

模型的复杂度可以代表迭代次数的增加(内部参数的优化),也可以代表模型的优化(特征数量的增多、函数复杂度的提高,比如从线性函数到二次、多次函数,或者说决策树的深度增加,等等)。

所以,过拟合就是机器学习的模型过于依附于训练集的特征,因而模型泛化能力降低的体现。泛化能力,就是模型从训练集移植到其他数据集仍然能够成功预测的能力。

分类问题也会出现过拟合,如下图所示,过于细致的分类边界也造成了过拟合。
在这里插入图片描述

过拟合现象是机器学习过程中怎么甩都甩不掉的阴影,影响着模型的泛化功能,因此我们几乎在每一次机器学习实战中都要和它作战!

刚才用逻辑回归模型进行心脏病预测的时候,我们也遇见了过拟合问题。那么,有什么方法解决吗?
降低过拟合现象通常有以下几种方法。

  • 增加数据集的数据个数。数据量太小时,非常容易过拟合,因为小数据集很容易精确拟合。
  • 找到模型优化时的平衡点,比如,选择迭代次数,或者选择相对简单的模型。
  • 正则化。为可能出现过拟合现象的模型增加正则项,通过降低模型在训练集上的精度来提高其泛化能力,这是非常重要的机器学习思想之一。

正则化参数

机器学习中的正则化通过引入模型参数λ(lambda)来实现。

加入了正则化参数之后的线性回归均方误差损失函数公式被更新成下面这样:
在这里插入图片描述

加入了正则化参数之后的逻辑回归均方误差损失函数公式被更新成下面这样:
在这里插入图片描述

现在的训练优化算法是一个由两项内容组成的函数:一个是损失项,用于衡量模型与数据的拟合度;另一个是正则化项,用于调解模型的复杂度。

从直观上不难看出,将正则化机制引入损失函数之后,当权重大的时候,损失被加大,λ值越大,惩罚越大。这个公式引导着机器在进行拟合的时候不会随便增加权重。

正则化的目的是帮助我们减少过拟合的现象,而它的本质是约束(限制)要优化的参数。
正则化的本质,就是崇尚简单化。同时以最小化损失和复杂度为目标,这称为结构风险最小化

选择λ值的目标是在简单化和训练集数据拟合之间达到适当的平衡。

  • 如果λ值过大,则模型会非常简单,将面临数据欠拟合的风险。此时模型无法从训练数据中获得足够的信息来做出有用的预测。而且λ值越大,机器收敛越慢。
  • 如果λ值过小,则模型会比较复杂,将面临数据过拟合的风险。此时模型由于获得了过多训练数据特点方面的信息而无法泛化到新数据。
  • 将λ设为0可彻底取消正则化。在这种情况下,训练的唯一目的是最小化损失,此时过拟合的风险较高。

正则化参数通常有L1正则化和L2正则化两种选择。

  • L1正则化,根据权重的绝对值的总和来惩罚权重。在依赖稀疏特征(后面会讲什么是稀疏特征)的模型中,L1正则化有助于使不相关或几乎不相关的特征的权重正好为0,从而将这些特征从模型中移除。
  • L2正则化,根据权重的平方和来惩罚权重。L2正则化有助于使离群值(具有较大正值或较小负值)的权重接近于0,但又不会正好为0。在线性模型中,L2正则化比较常用,而且在任何情况下都能够起到增强泛化能力的目的。

刚才给出的正则化公式实际上是L2正则化,因为权重w正则化时做了平方。

正则化不仅可以应用于逻辑回归模型,也可以应用于线性回归和其他机器学习模型,应用L1正则化的回归又叫 Lasso Regression(套索回归),应用L2正则化的回归又叫Ridge Regression(岭回归)。

而最佳λ值则取决于具体数据集,需要手动或自动进行调整。


学习机器学习的参考资料:
(1)书籍
利用Python进行数据分析
西瓜书
百面机器学习
机器学习实战
阿里云天池大赛赛题解析(机器学习篇)
白话机器学习中的数学
零基础学机器学习
图解机器学习算法

(2)机构
光环大数据
开课吧
极客时间
七月在线
深度之眼
贪心学院
拉勾教育
博学谷

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/641283.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用通俗易懂的方式讲解:使用 MongoDB 和 Langchain 构建生成型AI聊天机器人

想象一下:你收到了你梦寐以求的礼物:一台非凡的时光机,可以将你带到任何地方、任何时候。 你只有10分钟让它运行,否则它将消失。你拥有一份2000页的PDF,详细介绍了关于这台时光机的一切:它的历史、创造者、…

【计算机网络】应用层——HTTP 协议(一)

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】 本专栏旨在分享学习计算机网络的一点学习心得,欢迎大家在评论区交流讨论💌 目录 一、什么是 HTTP 协…

Unity3D在车载导航系统的应用场景浅谈

Unity3D在车载导航系统的应用场景非常广泛,它可以为车载导航系统带来更加逼真、直观和准确的使用体验。以下是几个具体的应用场景: 3D地图导航:Unity3D的实时3D渲染能力使得车载导航系统可以实现3D地图导航功能。通过Unity3D,可以…

假期刷题打卡--Day10

一、C语言刷题 预处理命令模块的题目就只有几个,下面开始选择结构这个模块的题目。 1、MT1112中庸之道 请编写一个简单程序,输入3个整数,比较他们的大小,输出中间的那个数 格式 输入格式: 输入整型,空…

linux源码编译安装llvm

目录 1 建立文件夹llvm 2 下载源码到llvm文件夹 3 解压上述文件 4 将解压后的3个文件夹改名,并移动到llvm-9.0.0.src中: 5 在llvm文件夹内建立build文件夹,并进入该文件夹: 6 执行cmake命令 7 make 8 安装 9 安装成功后…

java中哈希家族底层原理

HashSet如何判断两个对象是否相等? 在Java中,HashSet是使用哈希表实现的,其核心是通过对象的哈希码来快速查找和判断元素是否存在。在判断两个对象是否相等时,HashSet并不直接比较对象的内容,而是通过比较它们的哈希码…

01_前端框架之Bootstrap的应用

day01_前端框架之Bootstrap的应用 本课目标 能够完成 Bootstrap 环境搭建能够理解 Bootstrap 的栅格布局能够根据 Bootstrap 相关文档使用Bootstrap组件能够根据 Bootstrap 重构主页和表单页 第1章 bootstrap简介 1.1 什么是bootstrap Bootstrap 是全球最受欢迎的前端组件库…

ES模糊查询不区分大写

一、 概述 最近接到新任务,产品说名称能支持模糊搜索,且不区分大小写。 以为是数据库操作,那岂不是easy,分分钟的事情,往往事情觉得简单的时候就不简单了,脑子忽然闪现想起该模块数据是放在ES里的&#xf…

C++中特殊类的设计与单例模式的简易实现

设计一个只能在堆上创建对象的类 对于这种特殊类的设计我们一般都是优先考虑私有构造函数。然后对于一些特殊要求就直接通过静态成员函数的实现来完成。 class A//构造函数私有(也可以析构函数私有) { public:static A* creat(){return new A;} privat…

docker容器下php框架laravel的使用问题与解决方案

DB_CONNECTIONmysqlDB_HOSTlocalhost DB_CONNECTIONmysqlDB_HOSTdocker33-mysql-1 容器中只有数据库结构 进入MySQL容器内,创建表结构,添加数据 代码层面需要转换成数组 $query->get([*])->toArray(); 分页数据框架会返回带有data的数据&#xf…

计算机网络-AAA原理概述

对于任何网络,用户管理都是最基本的安全管理要求之一,在华为设备管理中通过AAA框架进行认证、授权、计费实现安全验证。 一、AAA概述 AAA(Authentication(认证), Authorization(授权), and Accounting(计费))是一种管理框架&#…

大模型微调实战笔记

大模型三要素 1.算法:模型结构,训练方法 2.数据:数据和模型效果之间的关系,token分词方法 3.算力:英伟达GPU,模型量化 基于大模型对话的系统架构 基于Lora的模型训练最好用,成本低好上手 提…

CentOS 7安装全解析:适合初学者的指导

目录 前言 一.centos安装 1.下载镜像文件 2.安装 二.远程连接,换源 1.下载并且使用MobaXtermMobaXterm free Xserver and tabbed SSH client for Windows (mobatek.net)https://mobaxterm.mobatek.net/ 远程连接 2.换源 前言 在当今的信息化时代&#xff0c…

【Leetcode 965.】判断单值二叉树

单值二叉树: 示例一: 示例二: 代码: bool isUnivalTree(struct TreeNode* root) {if(rootNULL)return true;if(root->left&&root->left->val!root->val)return false;if(root->right&&root-&…

leetcode-相交链表

160. 相交链表 注:两个链表相交不是指两个节点的值相等,而是指节点所在的地址 # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val x # self.next Noneclass Solution:def getInters…

【LeetCode-135】分发糖果(贪心)

LeetCode135.分发糖果 题目描述 老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。 你需要按照以下要求,帮助老师给这些孩子分发糖果: 每个孩子至少分配到 1 个糖果。…

Neos的渗透测试靶机练习——DarkHole-2

DarkHole-2 一、实验环境二、开始渗透1. 搜集信息2. git文件泄露3. SQL注入4. 提权 三、总结 一、实验环境 虚拟机软件:VirtualBox 攻击机:kali linux(网卡初始为仅主机模式,要有安全意识) 靶机:DarkHole-…

vue3+Element plus实现登录功能

一、想要实现的效果 二、搭建登录静态 1、实现左边背景和右边登录栏的总体布局布局&#xff1a; <el-row class"content"><!--el-col 列&#xff1a; --><el-col :span"16" :xs"0" class"content-left"></el-c…

仓储管理系统——软件工程报告(可行性研究报告及分析)①

可行性研究报告及分析 一、问题定义 1.1项目背景 随着社会的发展以及企业规模的扩大和业务的复杂化&#xff0c;仓库管理变得愈发重要。传统的手工管理方式已经导致了一系列问题&#xff0c;包括库存准确性低、订单处理效率慢等。为了提高仓库运作效率、降低成本并优化库存管…

Qt —— QCharts之曲线示波器(附源码)

示例效果 介绍 Qt5.7 版本后 Qt Charts 的发布。Qt Charts可以创建时尚的、交互式的、以数据为中心的用户界面。Qt Charts使用Qt Charts来简化集成。图表组件可以用作或对象或QML类型。 该类管理不同类型的系列和其他图表相关对象(如图例和轴)的图形表示形式。是一个可以在 .…