回溯法:0-1背包问题

问题描述

给定n种物品和一背包。 物品i的重量是w_i, 其价值为v_i,背包的容量为 c。 问应该如何选择装入背包中的物品,使得装入背包中物品的总价值最大?注意物品不重复!

实例:物品价值V={12, 11, 9, 8}, 物品重量W={8, 6, 4, 3}, 背包容量c=13

结点:向量(x_1,x_2,...,x_k) ( 子集的部分特征向量)

搜索空间: 子集树2^n片树叶

其中两个可行解为:

<0,1,1,1>:x_1=0,x_2=1,x_3=1,x_4=1\\ <1,0,1,0>:x_1=1,x_2=0,x_3=1,x_4=0

回溯法模版回顾 

参考文章:代码随想录

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

实现代码

终止条件代码

public static void backtracking(int n,  int startIndex) {if (startIndex>=n){//此时startIndex越界了if (getPathSum()<=c){result.add(new ArrayList<>(path));return;}return;}//再加后面任意一个就肯定不够了if (getPathSum()<=c&&(getPathSum() + items_min_weight[startIndex]) > c) {//        if (getPathSum()<c) {result.add(new ArrayList<>(path));return;}for (int i = startIndex; i < n; i++) {path.add(i);backtracking(n,  i + 1);path.removeLast();}

最终代码(含注释)

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;public class KnapsackProblem {static List<List<Integer>> result = new ArrayList<>();static LinkedList<Integer> path = new LinkedList<>();static int N = 4;//    static int[] items_weight = new int[N];static int[] items_weight = {8, 6, 4, 3};//    static int[] items_value = new int[N];static int[] items_value = {12, 11, 9, 8};//每个items_min_weight(对应下标为i)的值为min{items_weight[i],...,items_weight[N-1]}static int[] items_min_weight = new int[N];//c为背包的容量static int c=13;public static void main(String[] args) {items_min_weight[N - 1] = items_weight[N - 1];int min = items_min_weight[N - 1];for (int i = items_weight.length - 2; i >= 0; i--) {if (items_weight[i] < min) {min = items_weight[i];}items_min_weight[i] = min;}backtracking(N,  0);System.out.println("可行解有:");result.forEach(System.out::println);//要是想求最优解,直接对每个可行解对应重量求和,之后取最大一个就好啦}public static void backtracking(int n,  int startIndex) {if (startIndex>=n){//此时startIndex越界了if (getPathSum()<=c){result.add(new ArrayList<>(path));return;}return;}//再加后面任意一个就肯定不够了if (getPathSum()<=c&&(getPathSum() + items_min_weight[startIndex]) > c) {//        if (getPathSum()<c) {result.add(new ArrayList<>(path));return;}for (int i = startIndex; i < n; i++) {path.add(i);backtracking(n,  i + 1);path.removeLast();}}public static int getPathSum() {int sum = 0;for (int i = 0; i < path.size(); i++) {sum += items_weight[path.get(i)];}return sum;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/634919.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手写Vue3源码

Vue3核心源码 B站视频地址&#xff1a;https://www.bilibili.com/video/BV1nW4y147Pd?p2&vd_source36bacfbaa95ea7a433650dab3f7fa0ae Monorepo介绍 Monorepo 是管理项目代码的一种方式&#xff0c;只在一个仓库中管理多个模块/包 一个仓库可以维护多个模块&#xff0c;…

Fog-Aware Adaptive YOLO for Object Detection in Adverse Weather

Abstract 提出了一种雾自适应YOLO算法。使用一种雾评估算法将图片分为有雾和无雾图片&#xff0c;随后将标准的YOLO应用于正常图片&#xff0c;自适应YOLO应用于有雾图片。 Method 目前的除雾方法去除雾霾时不考虑其雾度和发生频率。例如&#xff0c;图像自适应YOLO算法[6]试…

【已解决】Qt Creator设计模式被禁用不能点的原因及解决方案

Qt Creator 下载地址&#xff08;含历史版本&#xff09;&#xff1a;https://download.qt.io/official_releases/qtcreator/ 症状 Qt Creator 目前最新版为12.0.1&#xff0c;安装后打开.qml文件发现设计工具图标为禁用状态。 原因及解决方案 根据官网材料&#xff08;Qt C…

机器视觉检测设备在连接器外观缺陷检测中的应用

作为传输电流或信号连接两个有源器件的器件&#xff0c;连接器被广泛应用于各个行业&#xff0c;从手机、平板、电脑&#xff0c;到冰箱、空调、洗衣机&#xff0c;再到汽车、国防、航空&#xff0c;处处是它的所在。每个电子产品少了连接器将无法运作&#xff0c;因此&#xf…

Python——面向对象案列

1. class User(object):#重写__int__初始化方法&#xff0c;该方法用来初始化属&#xff0c;在构建方法的时候&#xff0c;这个方法会自动触发&#xff0c;用来初始化属性def __init__(self): #name “” 这是一个局部变量#self类似指针 this#self.name类的属性print("构…

计算机网络-甘晴void学习笔记

计算机网络 计科210X 甘晴void 202108010XXX 文章目录 计算机网络期中复习1计算机网络和因特网1.1 因特网1.2 网络边缘1.3 网络核心1.4 分组交换的时延/丢包和吞吐量1.5 协议层次与服务模型 2 应用层原理2.1 应用层协议原理2.2 Web和Http2.3 因特网中的电子邮件2.4 DNS&#x…

K8S--部署Nacos

原文网址&#xff1a;K8S--部署Nacos-CSDN博客 简介 本文介绍K8S部署Nacos的方法。Nacos版本是&#xff1a;2.2.3。 部署方案 本文为了简单&#xff0c;使用此部署方式&#xff1a;使用本地pvconfigmap&#xff0c;以embedded模式部署单机nacos。以nodePort方式暴露端口。 …

vectorCast——Probe point 功能实现故障注入,局部变量打印,断点调试。

选择一个测试用例,选择coverage窗口进行查看。点击edit probe point,如图所示绿色的小圆圈。选代码中选择需要打断点的地方进行点击。黑色的小圆点都可以选。点击黑色小圆点,小圆点变绿,表示打断点成功。此时就可以根据自己的需求在打断点的位置编写一些C语言的命令语句。点…

线程同步--生产者消费者模型--单例模式线程池

文章目录 一.条件变量pthread线程库提供的条件变量操作 二.生产者消费者模型生产者消费者模型的高效性基于环形队列实现生产者消费者模型中的数据容器基于生产者消费者模型实现单例线程池 一.条件变量 条件变量是线程间共享的全局变量,线程间可以通过条件变量进行同步控制条件…

ffmpeg 常用命令行详解

概述 ffmpeg 是一个命令行音视频后期处理软件 1. 裁剪命令 参数说明 -i 文件&#xff0c;orgin.mp3 为待处理源文件-ss 裁剪时间&#xff0c;后跟裁剪开始时间&#xff0c;或者开始的秒数-t 裁剪时间output.mp3 为处理结果文件 ffmpeg -i organ.mp3 -ss 00:00:xx -t 120 o…

无刷电机学习-原理篇

一、无刷电机的优点 使用一项东西首先就要明白为什么要使用它&#xff0c;使用它有什么优点。与有刷电机相比无刷电机除了控制繁琐几乎全是优点。 1、应用范围广&#xff1a;家用电器&#xff08;冰箱空调压缩机、洗衣机、水泵等&#xff09;、汽车、航空航天、消费品工业自动…

4个值得使用的免费爬虫工具

在信息时代&#xff0c;数据的获取对于各行业都至关重要。而在数据采集的众多工具中&#xff0c;免费的爬虫软件成为许多用户的首选。本文将专心分享四款免费爬虫工具&#xff0c;突出介绍其中之一——147采集软件&#xff0c;为您揭示这些工具的优势和应用&#xff0c;助您在数…

【c语言】扫雷(上)

先开一个test.c文件用来游戏的逻辑测试&#xff0c;在分别开一个game.c文件和game.h头文件用来实现游戏的逻辑 主要步骤&#xff1a; 游戏规则&#xff1a; 输入1&#xff08;0&#xff09;开始&#xff08;结束&#xff09;游戏&#xff0c;输入一个坐标&#xff0c;如果该坐…

nodejs前端项目的CI/CD实现(二)jenkins的容器化部署

一、背景 docker安装jenkins&#xff0c;可能你会反问&#xff0c;这太简单了&#xff0c;有什么好讲的。 我最近就接手了一个打包项目&#xff0c;它是一个nodejs的前端项目&#xff0c;jenkins已在容器里部署且运行OK。 但是&#xff0c;前端组很追求新技术&#xff0c;不…

中小企业股权质押融资(下)

股权质押融资的主要风险 由于股权资产的特殊性&#xff0c;较固定资产抵押和质押、第三方担保等方式&#xff0c;股权质押融资风险易受企业经营状况等因素的影响&#xff0c;主要包括股权价值下跌的风险、股权质押的道德风险、股权处置风险以及现行法律不完善导致的法律风险。…

前端面试题汇总大全(含答案)-- 持续更新

​一、HTML 篇 1. 简述一下你对 HTML 语义化的理解&#xff1f; 用正确的标签做正确的事情。 html 语义化让页面的内容结构化&#xff0c;结构更清晰&#xff0c;便于对浏览器、搜索引擎解析&#xff1b;即使在没有样式 CSS 情况下也以一种文档格式显示&#xff0c;并且是容易…

学习Spring的第八天

先对自定义类使用MyComponet的注解&#xff0c;在设置这个MyComponet的的属性(一个 interface接口)&#xff0c;然后&#xff0c;扫描(BaseClassScanUtils.java执行,这文件不重要)当前包下是否有这个注解的类&#xff0c;再用MyComponentBeanFactoryPostProcessor.java(后工厂…

AI智能绘图,触手可及的未来

AI智能绘图不仅仅是技术的体现&#xff0c;更是对人类情感的共鸣。它能够根据用户的描述或情感需求&#xff0c;自动生成与之相匹配的画作。它们或细腻如丝&#xff0c;或磅礴如海&#xff0c;或温婉如诗&#xff0c;或激昂如歌&#xff0c;而这正是AI智能绘图的魅力所在。 所…

bgp基础实验

最终实验效果: 全网可达:R1,R7路由表都有r1-r7环回,R1汇总0.0/22和1.0/24,R7另一环回172.16.2.1/32 用tracert命令来R1 ping R7环回,实现全网通 实现代码: 首先配置好接口ip和环回,然后: [r1] rip 1 version 2 network 1.0.0.0 network 12.0.0.0 network 192.168.1.0 …

顶顶通呼叫中心中间件如何实现自己呼叫自己并且放音:一步步配置(mod_cti基于FreeSWITCH)

介绍 顶顶通呼叫中心中间件如何实现自己呼叫自己并且放音&#xff1a;一步步配置 一、配置acl.conf 打开ccadmin-》点击配置文件并且打开acl.conf-》配置好了点击提交XML。 注意&#xff1a;acl.conf的服务器IP必须是内网IP 添加了之后在运维调试输入reloadacl 在运维调试执…